{"title":"Geo-Social K-Cover Group queries for collaborative spatial computing","authors":"Yafei Li, Rui Chen, Jianliang Xu, Qiao Huang, Haibo Hu, Byron Choi","doi":"10.1109/ICDE.2016.7498399","DOIUrl":null,"url":null,"abstract":"In this paper, we study a new type of Geo-Social K-Cover Group (GSKCG) queries that, given a set of query points and a social network, retrieves a minimum user group in which each user is socially related to at least k other users and the users' associated regions (e.g., familiar regions or service regions) can jointly cover all the query points. Albeit its practical usefulness, the GSKCG query problem is NP-hard. We consequently explore a set of effective pruning strategies to derive an efficient algorithm for finding the optimal solution. Moreover, we design a novel index structure tailored to our problem to further accelerate query processing. Extensive experiments demonstrate that our algorithm achieves desirable performance on real-life datasets.","PeriodicalId":6883,"journal":{"name":"2016 IEEE 32nd International Conference on Data Engineering (ICDE)","volume":"41 1","pages":"1510-1511"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 32nd International Conference on Data Engineering (ICDE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDE.2016.7498399","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24
Abstract
In this paper, we study a new type of Geo-Social K-Cover Group (GSKCG) queries that, given a set of query points and a social network, retrieves a minimum user group in which each user is socially related to at least k other users and the users' associated regions (e.g., familiar regions or service regions) can jointly cover all the query points. Albeit its practical usefulness, the GSKCG query problem is NP-hard. We consequently explore a set of effective pruning strategies to derive an efficient algorithm for finding the optimal solution. Moreover, we design a novel index structure tailored to our problem to further accelerate query processing. Extensive experiments demonstrate that our algorithm achieves desirable performance on real-life datasets.