{"title":"Design optimization of sub-5 nm node nanosheet field effect transistors to minimize self-heating effects","authors":"F. Ding, H. Wong, T. Liu","doi":"10.1116/6.0000675","DOIUrl":null,"url":null,"abstract":"In this work, self-heating effects (SHE) in nanometer-scale metal-oxide-semiconductor field-effect transistor structures—namely, FinFETs (FFs), nanosheet gate-all-around FETs (NSFs), and nanowire gate-all-around FETs (GAAFs)—are investigated via three-dimensional device electrothermal simulations using technology computer-aided design software tools. Initially, transistor design parameter values are set so that their on-state currents are similar for the same operating voltage (VDD). It is found that NSFs and GAAFs are more susceptible to SHE and that p-channel transistors have higher peak internal temperatures than do their n-channel counterparts due to the poor thermal conductivity of the silicon-germanium used as the p-type source/drain material. Subsequently, the on-state currents of FFs, NSFs, and GAAFs are compared under the constraint of identical peak internal temperature, which is required to ensure long-term reliability, revealing that NSFs and GAAFs offer no performance advantage over FFs under this constraint. Design optimization of p-channel NSFs for minimal SHE is subsequently investigated. It is found that with such optimization, NSFs operating at lower VDD (for similar SHE) can achieve similar on-state current as FFs.","PeriodicalId":17652,"journal":{"name":"Journal of Vacuum Science & Technology. B. Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena","volume":"310 1","pages":"013201"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Vacuum Science & Technology. B. Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1116/6.0000675","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
In this work, self-heating effects (SHE) in nanometer-scale metal-oxide-semiconductor field-effect transistor structures—namely, FinFETs (FFs), nanosheet gate-all-around FETs (NSFs), and nanowire gate-all-around FETs (GAAFs)—are investigated via three-dimensional device electrothermal simulations using technology computer-aided design software tools. Initially, transistor design parameter values are set so that their on-state currents are similar for the same operating voltage (VDD). It is found that NSFs and GAAFs are more susceptible to SHE and that p-channel transistors have higher peak internal temperatures than do their n-channel counterparts due to the poor thermal conductivity of the silicon-germanium used as the p-type source/drain material. Subsequently, the on-state currents of FFs, NSFs, and GAAFs are compared under the constraint of identical peak internal temperature, which is required to ensure long-term reliability, revealing that NSFs and GAAFs offer no performance advantage over FFs under this constraint. Design optimization of p-channel NSFs for minimal SHE is subsequently investigated. It is found that with such optimization, NSFs operating at lower VDD (for similar SHE) can achieve similar on-state current as FFs.