Segmentation of rat spinal cord in PET using spatiotemporal information

E. K. Fung, D. Weinzimmer, S. Strittmatter, Yiyun Huang, R. Carson
{"title":"Segmentation of rat spinal cord in PET using spatiotemporal information","authors":"E. K. Fung, D. Weinzimmer, S. Strittmatter, Yiyun Huang, R. Carson","doi":"10.1109/NSSMIC.2010.5874483","DOIUrl":null,"url":null,"abstract":"Segmentation in PET images is fraught with difficulty stemming from variable activity values and low SNR. Standard practice utilizes co-registered images from other modalities to provide anatomical information. Sometimes, this information may be missing or of limited usefulness. We present a method of extracting centerlines of rat spinal cords solely from dynamic PET images. The method relies on the unique temporal information in the voxel time activity curves (TAC) to improve segmentation results. Using techniques previously developed for carotid arteries, centerlines were modeled by B-splines to ensure smooth realistic curves. This method is highly automated, only requiring user definition of a small number of seed points. The method was applied to [11C]AFM studies which measure serotonin transporters in the cord. Initial analysis showed that the method yielded comparable results in standard uptake values (SUV) compared to manual delineation of regions of interest (ROI). It also demonstrated an improved outcome over segmentation based on intensity alone.","PeriodicalId":13048,"journal":{"name":"IEEE Nuclear Science Symposuim & Medical Imaging Conference","volume":"86 1","pages":"3605-3609"},"PeriodicalIF":0.0000,"publicationDate":"2010-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Nuclear Science Symposuim & Medical Imaging Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NSSMIC.2010.5874483","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Segmentation in PET images is fraught with difficulty stemming from variable activity values and low SNR. Standard practice utilizes co-registered images from other modalities to provide anatomical information. Sometimes, this information may be missing or of limited usefulness. We present a method of extracting centerlines of rat spinal cords solely from dynamic PET images. The method relies on the unique temporal information in the voxel time activity curves (TAC) to improve segmentation results. Using techniques previously developed for carotid arteries, centerlines were modeled by B-splines to ensure smooth realistic curves. This method is highly automated, only requiring user definition of a small number of seed points. The method was applied to [11C]AFM studies which measure serotonin transporters in the cord. Initial analysis showed that the method yielded comparable results in standard uptake values (SUV) compared to manual delineation of regions of interest (ROI). It also demonstrated an improved outcome over segmentation based on intensity alone.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于时空信息的PET大鼠脊髓分割
由于活动值的变化和低信噪比,PET图像的分割存在困难。标准做法利用其他模式的联合配准图像来提供解剖信息。有时,这些信息可能会丢失或用处有限。提出了一种仅从动态PET图像中提取大鼠脊髓中心线的方法。该方法依靠体素时间活动曲线(TAC)中唯一的时间信息来改善分割结果。使用先前为颈动脉开发的技术,中心线由b样条建模,以确保光滑的真实曲线。这种方法是高度自动化的,只需要用户定义少量的种子点。该方法被应用于[11C]AFM研究,该研究测量脊髓中的血清素转运体。初步分析表明,与手动划定感兴趣区域(ROI)相比,该方法在标准摄取值(SUV)方面产生了可比的结果。它也证明了仅基于强度的分割的改善结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
CaF2(Eu): An “Old” scintillator revisited Evaluation of the accuracy and robustness of a motion correction algorithm for PET using a novel phantom approach The performance of GridPix detectors Applying the neutron scatter camera to treaty verification and warhead monitoring Development of an 8-channel time based readout ASIC for PET applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1