{"title":"Sentiment analysis of microblogs with rich emoticons","authors":"Shuo Zhang, Chunyang Ye, Hui Zhou","doi":"10.1109/SmartWorld-UIC-ATC-ScalCom-DigitalTwin-PriComp-Metaverse56740.2022.00284","DOIUrl":null,"url":null,"abstract":"Sentiment analysis for social media can help to explore deeper insight into the attitudes, opinions, and emotions behind the posts. Existing work usually analyze the emoticons and texts of the posts separately, and ignore the impact of emoticons on the emotional polarity of texts. As a result, the polarity of the posts could be marked inaccurately in the scenarios where the polarity of the texts relies on the contextual information of the emoticons. To address this issue, we propose a model, WnhBert-Bi-LSTM, for microblog sentiment analysis. The model trains phrase and emoticon embedding on a large-scale corpus composed of 280,000 Chinese microblogs, and uses the self-attention mechanism to evaluate the impact of emoticons on the overall emotional polarity. By converting emoticons into tractable features, the emoticons can be analyzed jointly with the texts to explore their feature interaction. Evaluations on 8,965 sina microblog posts show that the accuracy of our model is 3.19% higher than the baseline models. In addition, we constructed and open-sourced a new emoticon label corpus with more widely used words and more comprehensive emoticon data than the existing corpus.","PeriodicalId":43791,"journal":{"name":"Scalable Computing-Practice and Experience","volume":"29 1","pages":"1962-1969"},"PeriodicalIF":0.9000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scalable Computing-Practice and Experience","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SmartWorld-UIC-ATC-ScalCom-DigitalTwin-PriComp-Metaverse56740.2022.00284","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
Sentiment analysis for social media can help to explore deeper insight into the attitudes, opinions, and emotions behind the posts. Existing work usually analyze the emoticons and texts of the posts separately, and ignore the impact of emoticons on the emotional polarity of texts. As a result, the polarity of the posts could be marked inaccurately in the scenarios where the polarity of the texts relies on the contextual information of the emoticons. To address this issue, we propose a model, WnhBert-Bi-LSTM, for microblog sentiment analysis. The model trains phrase and emoticon embedding on a large-scale corpus composed of 280,000 Chinese microblogs, and uses the self-attention mechanism to evaluate the impact of emoticons on the overall emotional polarity. By converting emoticons into tractable features, the emoticons can be analyzed jointly with the texts to explore their feature interaction. Evaluations on 8,965 sina microblog posts show that the accuracy of our model is 3.19% higher than the baseline models. In addition, we constructed and open-sourced a new emoticon label corpus with more widely used words and more comprehensive emoticon data than the existing corpus.
期刊介绍:
The area of scalable computing has matured and reached a point where new issues and trends require a professional forum. SCPE will provide this avenue by publishing original refereed papers that address the present as well as the future of parallel and distributed computing. The journal will focus on algorithm development, implementation and execution on real-world parallel architectures, and application of parallel and distributed computing to the solution of real-life problems.