Metabolomic Analyses of Brain Tissue in Sepsis Induced by Cecal Ligation Reveal Specific Redox Alterations—Protective Effects of the Oxygen Radical Scavenger Edaravone
N. Hara, M. Chijiiwa, M. Yara, Y. Ishida, Yukihiko Ogiwara, M. Inazu, M. Kuroda, M. Karlsson, F. Sjovall, E. Elmér, H. Uchino
{"title":"Metabolomic Analyses of Brain Tissue in Sepsis Induced by Cecal Ligation Reveal Specific Redox Alterations—Protective Effects of the Oxygen Radical Scavenger Edaravone","authors":"N. Hara, M. Chijiiwa, M. Yara, Y. Ishida, Yukihiko Ogiwara, M. Inazu, M. Kuroda, M. Karlsson, F. Sjovall, E. Elmér, H. Uchino","doi":"10.1097/SHK.0000000000000465","DOIUrl":null,"url":null,"abstract":"ABSTRACT The pathophysiology of sepsis-associated encephalopathy (SAE) is complex and remains incompletely elucidated. Dysregulated reactive oxygen species (ROS) production and mitochondrial-mediated necrotic–apoptotic pathway have been proposed as part of the pathogenesis. The present study aimed at analyzing the preventive effect of the free radical scavenger edaravone on sepsis-induced brain alterations. Sepsis was induced by cecal ligation and puncture (CLP) and the mice were divided into three groups—CLP vehicle (CLPV), CLP and edaravone (MCI-186, 3-methyl-1-phenyl-2-pyrazolin-5-one) (CLPE), and sham-operated (Sham). Mice in CLPV and CLPE were injected with saline or edaravone intraperitoneally at a dose of 10 mg/kg twice daily. The treatments were initiated 4 days prior to the surgical procedure. Mortality, histological changes, electron microscopy (EM), and expression of Bcl-2 family genes (Bcl-2 and Bax) were analyzed in selected brain regions. CLPE showed significant improvement in survival compared with CLPV 18 h postinduction of sepsis (P < 0.05). At the same time point, pathohistological analysis also showed marked reduction of neuronal cell death in both parietal cortex and hippocampus in the CLPE (P < 0.05). RT-PCR and immunoblotting directed at the Bcl-2 family revealed increased Bax mRNA levels in hippocampus at 12 h in CLPV as well as an increased Bax/Bcl-2 protein ratio, changes that were significantly suppressed in CLPE. In conclusion, our study suggests that sepsis induced by cecal ligation alters cerebral redox status and supports a proapoptotic phenotype. The free radical scavenger edavarone reduces mortality of septic mice and protects against sepsis-induced neuronal cell death.","PeriodicalId":21787,"journal":{"name":"Shock: Injury, Inflammation, and Sepsis: Laboratory and Clinical Approaches","volume":"11 1","pages":"578–584"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Shock: Injury, Inflammation, and Sepsis: Laboratory and Clinical Approaches","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1097/SHK.0000000000000465","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17
Abstract
ABSTRACT The pathophysiology of sepsis-associated encephalopathy (SAE) is complex and remains incompletely elucidated. Dysregulated reactive oxygen species (ROS) production and mitochondrial-mediated necrotic–apoptotic pathway have been proposed as part of the pathogenesis. The present study aimed at analyzing the preventive effect of the free radical scavenger edaravone on sepsis-induced brain alterations. Sepsis was induced by cecal ligation and puncture (CLP) and the mice were divided into three groups—CLP vehicle (CLPV), CLP and edaravone (MCI-186, 3-methyl-1-phenyl-2-pyrazolin-5-one) (CLPE), and sham-operated (Sham). Mice in CLPV and CLPE were injected with saline or edaravone intraperitoneally at a dose of 10 mg/kg twice daily. The treatments were initiated 4 days prior to the surgical procedure. Mortality, histological changes, electron microscopy (EM), and expression of Bcl-2 family genes (Bcl-2 and Bax) were analyzed in selected brain regions. CLPE showed significant improvement in survival compared with CLPV 18 h postinduction of sepsis (P < 0.05). At the same time point, pathohistological analysis also showed marked reduction of neuronal cell death in both parietal cortex and hippocampus in the CLPE (P < 0.05). RT-PCR and immunoblotting directed at the Bcl-2 family revealed increased Bax mRNA levels in hippocampus at 12 h in CLPV as well as an increased Bax/Bcl-2 protein ratio, changes that were significantly suppressed in CLPE. In conclusion, our study suggests that sepsis induced by cecal ligation alters cerebral redox status and supports a proapoptotic phenotype. The free radical scavenger edavarone reduces mortality of septic mice and protects against sepsis-induced neuronal cell death.