The Role of Annealing Treatment on Crystallographic, Optical, and Electrical Features of Bi2O3 Thin Films Prepared Using Reactive Plasma Sputtering Technology

IF 3.9 Q2 NANOSCIENCE & NANOTECHNOLOGY Journal of Nanotechnology Pub Date : 2023-06-09 DOI:10.1155/2023/8638512
S. J. Beden, Hassan A. Dumboos, M. K. Ismael, Mohanad Kadhim Mejbel
{"title":"The Role of Annealing Treatment on Crystallographic, Optical, and Electrical Features of Bi2O3 Thin Films Prepared Using Reactive Plasma Sputtering Technology","authors":"S. J. Beden, Hassan A. Dumboos, M. K. Ismael, Mohanad Kadhim Mejbel","doi":"10.1155/2023/8638512","DOIUrl":null,"url":null,"abstract":"Bismuth oxide (Bi2O3) has attracted considerable research interest in test thin films made utilizing the reactive plasma sputtering (RPS) technology-assisted annealing treatment, allowing the development of diverse BixOx thin films. SEM, phase X-ray diffraction patterns, UV-Vis spectrometers, and D.C. two-probes are used to identify the crystallographic structure and assess the films’ optical-electrical properties. The XRD examination showed that forming Bi2O3 films with an amorphous to multiphase crystalline structure for sputtering time of 40 min was due to soda glass substrate temperature at a range of 30–35°C. Thin films of Bi2O3 crystal structures improved with annealing heat treatment at 200, 300, 400, and 500°C. Yet the formation of crystalline phase (β-Bi2O3 with δ-Bi2O3) Bi2O3 nanostructures occurred at higher temperatures. SEM images showed transparent particles highly affected by annealing temperatures. The nanostructures were about 102–510 nm long, and the diameter was 50–100 nm. The Bi2O3 film optical band gaps and nanostructures ranged from 2.75 to 3.05 eV. The annealing temperature differences affected the crystallite sizes, optical band gaps, and surface roughness. The findings showed that these differences caused the phase transition in Bi2O3 structures. The electrical calculation revealed that the electrical conductivity improved with annealing temperatures of 150–250°C while declining with temperature (300–500)°C with typical semiconductor films.","PeriodicalId":16378,"journal":{"name":"Journal of Nanotechnology","volume":null,"pages":null},"PeriodicalIF":3.9000,"publicationDate":"2023-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nanotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2023/8638512","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Bismuth oxide (Bi2O3) has attracted considerable research interest in test thin films made utilizing the reactive plasma sputtering (RPS) technology-assisted annealing treatment, allowing the development of diverse BixOx thin films. SEM, phase X-ray diffraction patterns, UV-Vis spectrometers, and D.C. two-probes are used to identify the crystallographic structure and assess the films’ optical-electrical properties. The XRD examination showed that forming Bi2O3 films with an amorphous to multiphase crystalline structure for sputtering time of 40 min was due to soda glass substrate temperature at a range of 30–35°C. Thin films of Bi2O3 crystal structures improved with annealing heat treatment at 200, 300, 400, and 500°C. Yet the formation of crystalline phase (β-Bi2O3 with δ-Bi2O3) Bi2O3 nanostructures occurred at higher temperatures. SEM images showed transparent particles highly affected by annealing temperatures. The nanostructures were about 102–510 nm long, and the diameter was 50–100 nm. The Bi2O3 film optical band gaps and nanostructures ranged from 2.75 to 3.05 eV. The annealing temperature differences affected the crystallite sizes, optical band gaps, and surface roughness. The findings showed that these differences caused the phase transition in Bi2O3 structures. The electrical calculation revealed that the electrical conductivity improved with annealing temperatures of 150–250°C while declining with temperature (300–500)°C with typical semiconductor films.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
退火处理对反应等离子溅射技术制备的Bi2O3薄膜的晶体学、光学和电学特性的影响
氧化铋(Bi2O3)在利用反应等离子溅射(RPS)技术辅助退火处理的测试薄膜方面引起了相当大的研究兴趣,从而可以开发出各种BixOx薄膜。利用扫描电子显微镜、相x射线衍射图、紫外可见光谱和直流双探针鉴定了薄膜的晶体结构,并评估了薄膜的光电性能。XRD分析表明,在30 ~ 35℃的碱玻璃衬底温度下,溅射时间为40 min,形成了具有非晶到多相结构的Bi2O3薄膜。在200、300、400和500℃退火热处理后,Bi2O3薄膜的晶体结构得到改善。然而,在较高的温度下会形成晶相(β-Bi2O3与δ-Bi2O3)的纳米结构。SEM图像显示透明颗粒受退火温度影响较大。纳米结构长102 ~ 510 nm,直径50 ~ 100 nm。Bi2O3薄膜的光学带隙和纳米结构在2.75 ~ 3.05 eV之间。退火温度的差异影响了晶体尺寸、光学带隙和表面粗糙度。结果表明,这些差异导致了Bi2O3结构的相变。电学计算表明,典型半导体薄膜的电导率在150 ~ 250℃退火温度下提高,在300 ~ 500℃退火温度下下降。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Nanotechnology
Journal of Nanotechnology NANOSCIENCE & NANOTECHNOLOGY-
CiteScore
5.50
自引率
2.40%
发文量
25
审稿时长
13 weeks
期刊最新文献
Green Synthesis of Zinc Oxide Nanoparticles using extract of onion (Allium cepa) peel [Síntesis verde de nanopartículas de óxido de zinc utilizando extracto de cáscara de cebolla (Allium cepa)] New Insights on Biosynthesis of Nanoparticles Using Plants Emphasizing the Use of Alfalfa (Medicago sativa L.) Tunable High-Frequency Acoustoelectric Current Oscillations in Fluorine-Doped Single-Walled Carbon Nanotubes Enhancement of Optical Properties and Stability in CsPbBr3 Using CQD and TOP Doping for Solar Cell Applications Boosting LiMn2O4 Diffusion Coefficients and Stability via Fe/Mg Doping and MWCNT Synergistically Modulating Microstructure
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1