Application of Acid Activated Bentonite for Efficient Removal of Organic Pollutants from Industrial Phosphoric Acid: Kinetic and Thermodynamic Study

M. Ali, A. Attia, M. Taha, M. El-Maadawy, A. M. Abo-Raia, Amr Abouria
{"title":"Application of Acid Activated Bentonite for Efficient Removal of Organic Pollutants from Industrial Phosphoric Acid: Kinetic and Thermodynamic Study","authors":"M. Ali, A. Attia, M. Taha, M. El-Maadawy, A. M. Abo-Raia, Amr Abouria","doi":"10.2118/194719-MS","DOIUrl":null,"url":null,"abstract":"\n Environmental and health issues are critical challenges for sustainable development in the 21st century; therefore, this paper investigates a simple and cost-effective process for recovery of organic matter (OM) from phosphoric acid to provide environmentally acceptable P-fertilizer. This study analyzed the structural transformations and adsorption properties of Na-bentonite clay before and after chemical activation by sulfuric and hydrochloric acids. The untreated and treated clay samples have been used for adsorption of organic matter from high strength phosphoric acid. The experimental data exhibited that the clay treated with sulfuric acid caused highest organic matter adsorption capacity. The kinetic models of adsorption were analyzed by the pseudo-first order, pseudo-second order, Elovich kinetic and Morris-Weber models. The results indicated that the pseudo-second-order kinetic model is more appropriate than the others for natural bentonite; but, for chemical activated clays, pseudo-first order is fitting. Obtained adsorption thermodynamic parameters (ΔH°, ΔS°, and ΔG°) expose that the organic matter adsorption is an endothermic, physical, and spontaneous process.","PeriodicalId":10908,"journal":{"name":"Day 2 Tue, March 19, 2019","volume":"11 1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 2 Tue, March 19, 2019","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/194719-MS","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Environmental and health issues are critical challenges for sustainable development in the 21st century; therefore, this paper investigates a simple and cost-effective process for recovery of organic matter (OM) from phosphoric acid to provide environmentally acceptable P-fertilizer. This study analyzed the structural transformations and adsorption properties of Na-bentonite clay before and after chemical activation by sulfuric and hydrochloric acids. The untreated and treated clay samples have been used for adsorption of organic matter from high strength phosphoric acid. The experimental data exhibited that the clay treated with sulfuric acid caused highest organic matter adsorption capacity. The kinetic models of adsorption were analyzed by the pseudo-first order, pseudo-second order, Elovich kinetic and Morris-Weber models. The results indicated that the pseudo-second-order kinetic model is more appropriate than the others for natural bentonite; but, for chemical activated clays, pseudo-first order is fitting. Obtained adsorption thermodynamic parameters (ΔH°, ΔS°, and ΔG°) expose that the organic matter adsorption is an endothermic, physical, and spontaneous process.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
酸活化膨润土高效去除工业磷酸中有机污染物的动力学和热力学研究
环境和健康问题是21世纪可持续发展面临的重大挑战;因此,本文研究了一种从磷酸中回收有机物(OM)的简单而经济的工艺,以提供环境可接受的磷肥。研究了钠膨润土在硫酸和盐酸化学活化前后的结构转变和吸附性能。将未处理和处理过的粘土样品用于吸附高强度磷酸中的有机物。实验数据表明,经硫酸处理的粘土对有机物的吸附能力最高。采用拟一级、拟二级、Elovich动力学和Morris-Weber模型分析了吸附动力学模型。结果表明,拟二级动力学模型比其他模型更适合天然膨润土;但是,对于化学活化粘土,拟一阶是合适的。得到的吸附热力学参数(ΔH°,ΔS°和ΔG°)表明,有机物吸附是一个吸热的、物理的、自发的过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Cost and Time Effective Stimulation Technique in Horizontal Cemented Liner Application in Carbonate Reservoir With HPCT Hydrajetting Tools Single Trip Multizone Perforation and Gravel Pack STPP: Success Story and Lessons Learned in Malaysian Application Machine Learning and the Analysis of High-Power Electromagnetic Interaction with Subsurface Matter Acoustic Properties of Carbonate: An Experimental and Modelling Study Application of Renewable Energy in the Oil and Gas Industry
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1