Minimizing filling time for ultraviolet nanoimprint lithography with templates with multiple structures

Yang H. Ban, R. Bonnecaze
{"title":"Minimizing filling time for ultraviolet nanoimprint lithography with templates with multiple structures","authors":"Yang H. Ban, R. Bonnecaze","doi":"10.1116/6.0000648","DOIUrl":null,"url":null,"abstract":"Optimizing the locations and sizes of droplets is the key to reducing defects and increasing throughput of ultraviolet nanoimprint lithography. In practice the templates are composed of regions with different structures. The interface between structures will generate complicated fluid flow behavior that will slow the filling time. Here, we explore several strategies through simulations to distribute resist material according to a nonuniform pattern to reduce filling time and ultimately increase throughput. In order to mimic the complexity of a template, the interface between different pairs of template structures is considered and the spreading and merging of droplets are simulated. From these simulations, it is found that the volume and arrangement of droplets underneath strongly affect the imprint time. By distributing the correct amount of resist underneath the template, one can remove the unnecessary fluid transferring step in droplet spreading and reduce the total filling time. Furthermore, by optimally placing the resist droplets, one can delay merging events and accelerate the spreading speed. Finally, the advantage of hexagonal arrangements is explored.","PeriodicalId":17652,"journal":{"name":"Journal of Vacuum Science & Technology. B. Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Vacuum Science & Technology. B. Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1116/6.0000648","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Optimizing the locations and sizes of droplets is the key to reducing defects and increasing throughput of ultraviolet nanoimprint lithography. In practice the templates are composed of regions with different structures. The interface between structures will generate complicated fluid flow behavior that will slow the filling time. Here, we explore several strategies through simulations to distribute resist material according to a nonuniform pattern to reduce filling time and ultimately increase throughput. In order to mimic the complexity of a template, the interface between different pairs of template structures is considered and the spreading and merging of droplets are simulated. From these simulations, it is found that the volume and arrangement of droplets underneath strongly affect the imprint time. By distributing the correct amount of resist underneath the template, one can remove the unnecessary fluid transferring step in droplet spreading and reduce the total filling time. Furthermore, by optimally placing the resist droplets, one can delay merging events and accelerate the spreading speed. Finally, the advantage of hexagonal arrangements is explored.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
减少多结构模板的紫外纳米压印印刷的填充时间
优化液滴的位置和尺寸是减少缺陷和提高紫外纳米压印工艺吞吐量的关键。在实践中,模板由不同结构的区域组成。结构之间的界面会产生复杂的流体流动行为,从而减慢填充时间。在这里,我们通过模拟探索了几种策略,以根据非均匀模式分配抗蚀剂材料,以减少填充时间,最终提高吞吐量。为了模拟模板的复杂性,考虑了不同对模板结构之间的界面,并模拟了液滴的扩散和合并过程。从这些模拟中发现,液滴的体积和排列对压印时间有很大的影响。通过在模板下方分布适量的抗蚀剂,可以消除液滴扩散过程中不必要的流体传递步骤,减少总填充时间。此外,通过最佳放置抗蚀剂液滴,可以延迟合并事件并加快扩散速度。最后,探讨了六边形排列的优点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Tunable and scalable fabrication of plasmonic dimer arrays with sub-10 nm nanogaps by area-selective atomic layer deposition Characterization and optimization of bonding and interconnect technology for 3D stacking thin dies Ultradeep microaxicons in lithium niobate by focused Xe ion beam milling Self-powered ultraviolet photodiode based on lateral polarity structure GaN films Electrical conductivity across the alumina support layer following carbon nanotube growth
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1