Learning opening books in partially observable games: Using random seeds in Phantom Go

T. Cazenave, Jialin Liu, F. Teytaud, O. Teytaud
{"title":"Learning opening books in partially observable games: Using random seeds in Phantom Go","authors":"T. Cazenave, Jialin Liu, F. Teytaud, O. Teytaud","doi":"10.1109/CIG.2016.7860389","DOIUrl":null,"url":null,"abstract":"Many artificial intelligences (AIs) are randomized. One can be lucky or unlucky with the random seed; we quantify this effect and show that, maybe contrarily to intuition, this is far from being negligible. Then, we apply two different existing algorithms for selecting good seeds and good probability distributions over seeds. This mainly leads to learning an opening book. We apply this to Phantom Go, which, as all phantom games, is hard for opening book learning. We improve the winning rate from 50% to 70% in 5×5 against the same AI, and from approximately 0% to 40% in 5×5, 7×7 and 9×9 against a stronger (learning) opponent.","PeriodicalId":6594,"journal":{"name":"2016 IEEE Conference on Computational Intelligence and Games (CIG)","volume":"739 1","pages":"1-7"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Conference on Computational Intelligence and Games (CIG)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIG.2016.7860389","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Many artificial intelligences (AIs) are randomized. One can be lucky or unlucky with the random seed; we quantify this effect and show that, maybe contrarily to intuition, this is far from being negligible. Then, we apply two different existing algorithms for selecting good seeds and good probability distributions over seeds. This mainly leads to learning an opening book. We apply this to Phantom Go, which, as all phantom games, is hard for opening book learning. We improve the winning rate from 50% to 70% in 5×5 against the same AI, and from approximately 0% to 40% in 5×5, 7×7 and 9×9 against a stronger (learning) opponent.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在部分可观察的游戏中学习打开书籍:在《幻影Go》中使用随机种子
许多人工智能(ai)是随机的。随机的种子可以是幸运的,也可以是不幸的;我们量化了这种影响,并表明,也许与直觉相反,这远非微不足道。然后,我们应用两种不同的现有算法来选择好的种子和种子上的好的概率分布。这主要导致学习一本打开的书。我们将此应用于幻影围棋,与所有幻影游戏一样,它很难通过书本学习。在5×5中,我们将胜率从50%提高到70%,在5×5、7×7和9×9中,我们将胜率从大约0%提高到40%,以对抗更强大的(学习)对手。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Human gesture classification by brute-force machine learning for exergaming in physiotherapy Evolving micro for 3D Real-Time Strategy games Constrained surprise search for content generation Design influence on player retention: A method based on time varying survival analysis Deep Q-learning using redundant outputs in visual doom
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1