U. Sahu, Kushaagra Goyal, Utkarsh Saxena, T. Chavan, U. Ganguly, D. Bhowmik
{"title":"Skyrmionic implementation of Spike Time Dependent Plasticity (STDP) enabled Spiking Neural Network (SNN) under supervised learning scheme","authors":"U. Sahu, Kushaagra Goyal, Utkarsh Saxena, T. Chavan, U. Ganguly, D. Bhowmik","doi":"10.1109/icee44586.2018.8937850","DOIUrl":null,"url":null,"abstract":"Hardware implementation of Artificial Neural Network (ANN) algorithms, which are being currently used widely by the data sciences community, provides advantages of memory-computing intertwining, high speed and low energy dissipation which software implementation of the same does not have. In this paper, we simulate a spintronic hardware implementation of a third generation neural network - Spike Time Dependent Plasticity (STDP) learning enabled Spiking Neural Network (SNN), which is closer to functioning of the brain than most other ANN-s. Spin orbit torque driven skyrmionic device, driven by a transistor based circuit to enable STDP, is used as a synapse here. We use a combination of micromagnetic simulations, transistor circuit simulations and implementation of SNN algorithm in a numerical package to simulate our skyrmionic SNN. We train the skyrmionic SNN on different datasets under a supervised learning scheme and calculate the energy dissipated in updating the weights of the synapses in order to train the network.","PeriodicalId":6590,"journal":{"name":"2018 4th IEEE International Conference on Emerging Electronics (ICEE)","volume":"80 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 4th IEEE International Conference on Emerging Electronics (ICEE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/icee44586.2018.8937850","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Hardware implementation of Artificial Neural Network (ANN) algorithms, which are being currently used widely by the data sciences community, provides advantages of memory-computing intertwining, high speed and low energy dissipation which software implementation of the same does not have. In this paper, we simulate a spintronic hardware implementation of a third generation neural network - Spike Time Dependent Plasticity (STDP) learning enabled Spiking Neural Network (SNN), which is closer to functioning of the brain than most other ANN-s. Spin orbit torque driven skyrmionic device, driven by a transistor based circuit to enable STDP, is used as a synapse here. We use a combination of micromagnetic simulations, transistor circuit simulations and implementation of SNN algorithm in a numerical package to simulate our skyrmionic SNN. We train the skyrmionic SNN on different datasets under a supervised learning scheme and calculate the energy dissipated in updating the weights of the synapses in order to train the network.