Skyrmionic implementation of Spike Time Dependent Plasticity (STDP) enabled Spiking Neural Network (SNN) under supervised learning scheme

U. Sahu, Kushaagra Goyal, Utkarsh Saxena, T. Chavan, U. Ganguly, D. Bhowmik
{"title":"Skyrmionic implementation of Spike Time Dependent Plasticity (STDP) enabled Spiking Neural Network (SNN) under supervised learning scheme","authors":"U. Sahu, Kushaagra Goyal, Utkarsh Saxena, T. Chavan, U. Ganguly, D. Bhowmik","doi":"10.1109/icee44586.2018.8937850","DOIUrl":null,"url":null,"abstract":"Hardware implementation of Artificial Neural Network (ANN) algorithms, which are being currently used widely by the data sciences community, provides advantages of memory-computing intertwining, high speed and low energy dissipation which software implementation of the same does not have. In this paper, we simulate a spintronic hardware implementation of a third generation neural network - Spike Time Dependent Plasticity (STDP) learning enabled Spiking Neural Network (SNN), which is closer to functioning of the brain than most other ANN-s. Spin orbit torque driven skyrmionic device, driven by a transistor based circuit to enable STDP, is used as a synapse here. We use a combination of micromagnetic simulations, transistor circuit simulations and implementation of SNN algorithm in a numerical package to simulate our skyrmionic SNN. We train the skyrmionic SNN on different datasets under a supervised learning scheme and calculate the energy dissipated in updating the weights of the synapses in order to train the network.","PeriodicalId":6590,"journal":{"name":"2018 4th IEEE International Conference on Emerging Electronics (ICEE)","volume":"80 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 4th IEEE International Conference on Emerging Electronics (ICEE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/icee44586.2018.8937850","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Hardware implementation of Artificial Neural Network (ANN) algorithms, which are being currently used widely by the data sciences community, provides advantages of memory-computing intertwining, high speed and low energy dissipation which software implementation of the same does not have. In this paper, we simulate a spintronic hardware implementation of a third generation neural network - Spike Time Dependent Plasticity (STDP) learning enabled Spiking Neural Network (SNN), which is closer to functioning of the brain than most other ANN-s. Spin orbit torque driven skyrmionic device, driven by a transistor based circuit to enable STDP, is used as a synapse here. We use a combination of micromagnetic simulations, transistor circuit simulations and implementation of SNN algorithm in a numerical package to simulate our skyrmionic SNN. We train the skyrmionic SNN on different datasets under a supervised learning scheme and calculate the energy dissipated in updating the weights of the synapses in order to train the network.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在监督学习方案下,Skyrmionic实现了峰值时间依赖可塑性(STDP)的峰值神经网络(SNN)
人工神经网络(Artificial Neural Network, ANN)算法是目前数据科学界广泛使用的一种算法,其硬件实现具有软件实现所不具备的内存计算交织、高速和低能耗等优点。在本文中,我们模拟了第三代神经网络的自旋电子硬件实现- Spike Time Dependent Plasticity (STDP) learning - enabled Spike neural network (SNN),它比大多数其他ANN-s更接近大脑的功能。自旋轨道转矩驱动的skyronic器件,由基于晶体管的电路驱动以实现STDP,在这里用作突触。我们使用微磁模拟、晶体管电路模拟和SNN算法在数值封装中的实现相结合来模拟我们的skyrmionic SNN。我们在监督学习方案下在不同的数据集上训练skyrmionic SNN,并计算更新突触权值所消耗的能量以训练网络。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Comprehensive Computational Modelling Approach for Graphene FETs Thermoelectric Properties of CrI3 Monolayer A Simple Charge and Capacitance Compact Model for Asymmetric III-V DGFETs Using CCDA Selective dewetting of metal films for fabrication of atomically separated nanoplasmonic dimers SIMS characterization of TiN diffusion barrier layer on steel substrate
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1