A quantum mechanical transport approach to analyze of DG Silicon nanowire transistor

F. Karimi, R. Hosseini
{"title":"A quantum mechanical transport approach to analyze of DG Silicon nanowire transistor","authors":"F. Karimi, R. Hosseini","doi":"10.1109/INEC.2010.5424755","DOIUrl":null,"url":null,"abstract":"In this paper we have used quantum mechanical transport approach to analyze electrical characteristics of silicon nanowire transistor and have compared the results with those obtained using semi classical Boltzmann transport model. The analyses employs a three dimensional simulation of Silicon nanowire transistor based on self consistent solution of Poisson, Schrodinger equations. Quantum mechanical transport model uses the non equilibrium Green's function (NEGF) [1] while the semi classic model doesn't account for tunneling current. We investigate the effect of tunneling current on I-V characteristics of Nanowire transistor with the different channel length. We have used of NANO TCAD ViDES software to analyze a DG (double gate) silicon nano wire transistor. We get that when the channel length increases to20nm and upper, tunneling is significant only for inversion condition, while for low gate voltages the error between these two models is negligible.","PeriodicalId":6390,"journal":{"name":"2010 3rd International Nanoelectronics Conference (INEC)","volume":"10 1","pages":"602-603"},"PeriodicalIF":0.0000,"publicationDate":"2010-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 3rd International Nanoelectronics Conference (INEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INEC.2010.5424755","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper we have used quantum mechanical transport approach to analyze electrical characteristics of silicon nanowire transistor and have compared the results with those obtained using semi classical Boltzmann transport model. The analyses employs a three dimensional simulation of Silicon nanowire transistor based on self consistent solution of Poisson, Schrodinger equations. Quantum mechanical transport model uses the non equilibrium Green's function (NEGF) [1] while the semi classic model doesn't account for tunneling current. We investigate the effect of tunneling current on I-V characteristics of Nanowire transistor with the different channel length. We have used of NANO TCAD ViDES software to analyze a DG (double gate) silicon nano wire transistor. We get that when the channel length increases to20nm and upper, tunneling is significant only for inversion condition, while for low gate voltages the error between these two models is negligible.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用量子力学输运方法分析DG硅纳米线晶体管
本文采用量子力学输运方法分析了硅纳米线晶体管的电特性,并与半经典玻尔兹曼输运模型的结果进行了比较。分析采用基于泊松、薛定谔方程自洽解的硅纳米线晶体管三维模拟。量子力学输运模型使用非平衡格林函数(NEGF),而半经典模型不考虑隧道电流。研究了隧道电流对不同沟道长度纳米线晶体管I-V特性的影响。利用NANO TCAD ViDES软件对双栅硅纳米线晶体管进行了分析。当通道长度增加到20nm及以上时,隧道效应仅在反转条件下显著,而在低栅极电压下,两种模型之间的误差可以忽略不计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A synthetic strategy of quantum dot-bioconjugate Effects of laser drilling through silicon substrate on MOSFET device characteristics The study of Y2O3-doping-induced size diversification of ZrO2 nanocrystals Antibacterial, antiviral, and antibiofilms nanoparticles High efficiency InGaP/GaAs solar cell with Sub-wavelength structure on AlInP window layer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1