Assessment of Embodied Energy and Environmental Impact of Sustainable Building Materials and Technologies for Residential Sector

M. Mahboob, Muzaffar Ali, T. Rashid, Rabia Hassan
{"title":"Assessment of Embodied Energy and Environmental Impact of Sustainable Building Materials and Technologies for Residential Sector","authors":"M. Mahboob, Muzaffar Ali, T. Rashid, Rabia Hassan","doi":"10.3390/engproc2021012062","DOIUrl":null,"url":null,"abstract":"The energy demand of developing countries increases every year. Large amounts of energy are consumed during the production and transportation of construction materials. Conservation of energy became important in the perspective of limiting carbon emissions into the environment and for decreasing the cost of materials. This article is concentrated on some issues affecting the embodied energy of construction materials mainly in the residential sector. Energy consumption in three various wall structures has been made. The comparison demonstrated that the embodied energy of traditional wall structures is 3-times higher than the energy efficient building materials. CO2 emissions produced by conventional materials and green building materials are 54.96 Kg CO2/m2 and 35.33 Kg CO2/m2, respectively. Finally, the results revealed substantial difference in embodied energy and carbon footprints of materials for which its production involves a high amount of energy consumption.","PeriodicalId":11748,"journal":{"name":"Engineering Proceedings","volume":"226 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/engproc2021012062","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

The energy demand of developing countries increases every year. Large amounts of energy are consumed during the production and transportation of construction materials. Conservation of energy became important in the perspective of limiting carbon emissions into the environment and for decreasing the cost of materials. This article is concentrated on some issues affecting the embodied energy of construction materials mainly in the residential sector. Energy consumption in three various wall structures has been made. The comparison demonstrated that the embodied energy of traditional wall structures is 3-times higher than the energy efficient building materials. CO2 emissions produced by conventional materials and green building materials are 54.96 Kg CO2/m2 and 35.33 Kg CO2/m2, respectively. Finally, the results revealed substantial difference in embodied energy and carbon footprints of materials for which its production involves a high amount of energy consumption.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
住宅领域可持续建筑材料和技术的隐含能源和环境影响评估
发展中国家的能源需求每年都在增加。在建筑材料的生产和运输过程中消耗了大量的能源。从限制碳排放到环境和降低材料成本的角度来看,节约能源变得很重要。本文主要研究了住宅领域中影响建筑材料蕴含能源的一些问题。计算了三种不同墙体结构的能耗。对比表明,传统墙体结构的蕴含能量是节能建筑材料的3倍。传统材料和绿色建材的CO2排放量分别为54.96 Kg CO2/m2和35.33 Kg CO2/m2。最后,研究结果显示,生产耗能高的材料,其隐含能量和碳足迹存在显著差异。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
0.70
自引率
0.00%
发文量
0
期刊最新文献
MNET: Semantic Segmentation for Satellite Images Based on Multi-Channel Decomposition Location-Assistive and Real-Time Query IoT-Based Transport System The Thermal Analysis of a Sensible Heat Thermal Energy Storage System Using Circular-Shaped Slag and Concrete for Medium- to High-Temperature Applications Performance Enhancement of Photovoltaic Water Pumping System Based on BLDC Motor under Partial Shading Condition Solar Powered DC Refrigerator for Small Scale Applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1