Non-Interactive DSSE for Medical Data Sharing With Forward and Backward Privacy

IF 3 3区 计算机科学 Q2 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE IEEE Transactions on Sustainable Computing Pub Date : 2023-03-19 DOI:10.1109/TSUSC.2023.3277876
Hanqi Zhang;Chang Xu;Liehuang Zhu;Chuan Zhang;Rongxing Lu;Yunguo Guan;Kashif Sharif
{"title":"Non-Interactive DSSE for Medical Data Sharing With Forward and Backward Privacy","authors":"Hanqi Zhang;Chang Xu;Liehuang Zhu;Chuan Zhang;Rongxing Lu;Yunguo Guan;Kashif Sharif","doi":"10.1109/TSUSC.2023.3277876","DOIUrl":null,"url":null,"abstract":"In medical cloud computing, more medical data owners are preferred to outsource their sensitive data to the cloud after encryption. Meanwhile, dynamic searchable symmetric encryption (DSSE) provides the capability for data users to query over the dynamically-updated encrypted database. To reduce update leakage, a secure DSSE scheme usually requires forward and backward privacy. However, existing multi-client DSSE schemes with forward and backward privacy require the data owner to keep online to respond to per-query interaction from data users. To address this issue, we propose a multi-client non-interactive DSSE scheme with forward and backward privacy, namely MCNI. The core design of MCNI is leveraging time range queries to achieve non-interactive forward privacy since the past queries cannot be used to search the newly-added timestamps. To enable efficient time range queries, we convert the timestamp and time range into the boolean wildcard form and develop Boolean Wildcard Matching (BWM) algorithm that formulates the match as a dot product calculation problem. Finally, we combine the polynomial fitting technique, time range query, and random matrix multiplication technique to achieve efficient keyword searches without revealing sensitive information. Theoretical analysis and extensive experiments demonstrate the security and effectiveness of our proposed scheme, respectively.","PeriodicalId":13268,"journal":{"name":"IEEE Transactions on Sustainable Computing","volume":"8 4","pages":"682-693"},"PeriodicalIF":3.0000,"publicationDate":"2023-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Sustainable Computing","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10129847/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 1

Abstract

In medical cloud computing, more medical data owners are preferred to outsource their sensitive data to the cloud after encryption. Meanwhile, dynamic searchable symmetric encryption (DSSE) provides the capability for data users to query over the dynamically-updated encrypted database. To reduce update leakage, a secure DSSE scheme usually requires forward and backward privacy. However, existing multi-client DSSE schemes with forward and backward privacy require the data owner to keep online to respond to per-query interaction from data users. To address this issue, we propose a multi-client non-interactive DSSE scheme with forward and backward privacy, namely MCNI. The core design of MCNI is leveraging time range queries to achieve non-interactive forward privacy since the past queries cannot be used to search the newly-added timestamps. To enable efficient time range queries, we convert the timestamp and time range into the boolean wildcard form and develop Boolean Wildcard Matching (BWM) algorithm that formulates the match as a dot product calculation problem. Finally, we combine the polynomial fitting technique, time range query, and random matrix multiplication technique to achieve efficient keyword searches without revealing sensitive information. Theoretical analysis and extensive experiments demonstrate the security and effectiveness of our proposed scheme, respectively.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于医疗数据共享的非交互式前向和后向隐私 DSSE
在医疗云计算中,越来越多的医疗数据所有者倾向于将敏感数据加密后外包到云中。同时,动态可搜索对称加密(DSSE)为数据用户提供了查询动态更新加密数据库的能力。为了减少更新泄漏,安全的 DSSE 方案通常需要前向和后向隐私。然而,现有的具有前向和后向隐私的多客户端 DSSE 方案要求数据所有者保持在线,以响应数据用户的每次查询交互。为了解决这个问题,我们提出了一种具有前向和后向隐私的多客户端非交互式 DSSE 方案,即 MCNI。MCNI 的核心设计是利用时间范围查询来实现非交互式前向隐私,因为过去的查询不能用于搜索新添加的时间戳。为了实现高效的时间范围查询,我们将时间戳和时间范围转换成布尔通配符形式,并开发了布尔通配符匹配(BWM)算法,该算法将匹配问题表述为点乘计算问题。最后,我们将多项式拟合技术、时间范围查询和随机矩阵乘法技术相结合,在不泄露敏感信息的情况下实现了高效的关键词搜索。理论分析和大量实验分别证明了我们所提方案的安全性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Transactions on Sustainable Computing
IEEE Transactions on Sustainable Computing Mathematics-Control and Optimization
CiteScore
7.70
自引率
2.60%
发文量
54
期刊最新文献
Guest Editorial of the Special Section on AI Powered Edge Computing for IoT Editorial Addressing Concept Drift in IoT Anomaly Detection: Drift Detection, Interpretation, and Adaptation Dynamic Event-Triggered State Estimation for Power Harmonics With Quantization Effects: A Zonotopic Set-Membership Approach Staged Noise Perturbation for Privacy-Preserving Federated Learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1