{"title":"A functional analytic approach to validated numerics for eigenvalues of delay equations","authors":"J. Lessard, J. D. M. James","doi":"10.3934/jcd.2020005","DOIUrl":null,"url":null,"abstract":"This work develops validated numerical methods for linear stability analysis at an equilibrium solution of a system of delay differential equations (DDEs). In addition to providing mathematically rigorous bounds on the locations of eigenvalues, our method leads to validated counts. For example we obtain the computer assisted theorems about Morse indices (number of unstable eigenvalues). The case of a single constant delay is considered. The method downplays the role of the scalar transcendental characteristic equation in favor of a functional analytic approach exploiting the strengths of numerical linear algebra/techniques of scientific computing. The idea is to consider an equivalent implicitly defined discrete time dynamical system which is projected onto a countable basis of Chebyshev series coefficients. The projected problem reduces to questions about certain sparse infinite matrices, which are well approximated by \\begin{document}$ N \\times N $\\end{document} matrices for large enough \\begin{document}$ N $\\end{document} . We develop the appropriate truncation error bounds for the infinite matrices, provide a general numerical implementation which works for any system with one delay, and discuss computer-assisted theorems in a number of example problems.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/jcd.2020005","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 9
Abstract
This work develops validated numerical methods for linear stability analysis at an equilibrium solution of a system of delay differential equations (DDEs). In addition to providing mathematically rigorous bounds on the locations of eigenvalues, our method leads to validated counts. For example we obtain the computer assisted theorems about Morse indices (number of unstable eigenvalues). The case of a single constant delay is considered. The method downplays the role of the scalar transcendental characteristic equation in favor of a functional analytic approach exploiting the strengths of numerical linear algebra/techniques of scientific computing. The idea is to consider an equivalent implicitly defined discrete time dynamical system which is projected onto a countable basis of Chebyshev series coefficients. The projected problem reduces to questions about certain sparse infinite matrices, which are well approximated by \begin{document}$ N \times N $\end{document} matrices for large enough \begin{document}$ N $\end{document} . We develop the appropriate truncation error bounds for the infinite matrices, provide a general numerical implementation which works for any system with one delay, and discuss computer-assisted theorems in a number of example problems.
This work develops validated numerical methods for linear stability analysis at an equilibrium solution of a system of delay differential equations (DDEs). In addition to providing mathematically rigorous bounds on the locations of eigenvalues, our method leads to validated counts. For example we obtain the computer assisted theorems about Morse indices (number of unstable eigenvalues). The case of a single constant delay is considered. The method downplays the role of the scalar transcendental characteristic equation in favor of a functional analytic approach exploiting the strengths of numerical linear algebra/techniques of scientific computing. The idea is to consider an equivalent implicitly defined discrete time dynamical system which is projected onto a countable basis of Chebyshev series coefficients. The projected problem reduces to questions about certain sparse infinite matrices, which are well approximated by \begin{document}$ N \times N $\end{document} matrices for large enough \begin{document}$ N $\end{document} . We develop the appropriate truncation error bounds for the infinite matrices, provide a general numerical implementation which works for any system with one delay, and discuss computer-assisted theorems in a number of example problems.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.