A deep learning framework for real‐time 3D model registration in robot‐assisted laparoscopic surgery

Erica Padovan, Giorgia Marullo, L. Tanzi, P. Piazzolla, Sandro Moos, F. Porpiglia, E. Vezzetti
{"title":"A deep learning framework for real‐time 3D model registration in robot‐assisted laparoscopic surgery","authors":"Erica Padovan, Giorgia Marullo, L. Tanzi, P. Piazzolla, Sandro Moos, F. Porpiglia, E. Vezzetti","doi":"10.1002/rcs.2387","DOIUrl":null,"url":null,"abstract":"The current study presents a deep learning framework to determine, in real‐time, position and rotation of a target organ from an endoscopic video. These inferred data are used to overlay the 3D model of patient's organ over its real counterpart. The resulting augmented video flow is streamed back to the surgeon as a support during laparoscopic robot‐assisted procedures.","PeriodicalId":75029,"journal":{"name":"The international journal of medical robotics + computer assisted surgery : MRCAS","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The international journal of medical robotics + computer assisted surgery : MRCAS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/rcs.2387","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

The current study presents a deep learning framework to determine, in real‐time, position and rotation of a target organ from an endoscopic video. These inferred data are used to overlay the 3D model of patient's organ over its real counterpart. The resulting augmented video flow is streamed back to the surgeon as a support during laparoscopic robot‐assisted procedures.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
机器人辅助腹腔镜手术中实时3D模型注册的深度学习框架
目前的研究提出了一种深度学习框架,可以从内窥镜视频中实时确定目标器官的位置和旋转。这些推断出来的数据被用来将病人器官的3D模型覆盖在其真实对应的器官上。由此产生的增强视频流在腹腔镜机器人辅助手术期间作为支持流传回给外科医生。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.30
自引率
0.00%
发文量
0
期刊最新文献
Comparison of robotic and open central pancreatectomy. Full coverage path planning algorithm for MRgFUS therapy A deep learning framework for real‐time 3D model registration in robot‐assisted laparoscopic surgery A Novel Solution of Using Mixed Reality in Bowel and Oral and Maxillofacial Surgical Telepresence: 3D Mean Value Cloning algorithm. A Novel Visualization System of Using Augmented Reality in Knee Replacement Surgery: Enhanced Bidirectional Maximum CorrentropyAlgorithm.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1