The multi-user detection under fading channel

Dong-yu WANG , Tao DUAN
{"title":"The multi-user detection under fading channel","authors":"Dong-yu WANG ,&nbsp;Tao DUAN","doi":"10.1016/S1005-8885(14)60511-2","DOIUrl":null,"url":null,"abstract":"<div><p>This paper proposes a method of blind multi-user detection algorithm based on signal sub-space estimation under the fading channels in the present of impulse noise. This algorithm adapts recursive least square (RLS) filter that can estimate the coefficients using only the signature waveform. In addition, to strengthen the ability of resisting the impulse noise, a new suppressive factor is induced, which can suppress the amplitude of the impulse, and improve the ability of convergence speed. Simulation results show that new RLS algorithm is more robust against consecutive impulse noise and have better convergence ability than conventional RLS. In addition, Compared to the least mean square (LMS) detector, the new robust RLS sub-space based method has better multi-address-inference (MAI) suppressing performance, especially, when channel degrades.</p></div>","PeriodicalId":35359,"journal":{"name":"Journal of China Universities of Posts and Telecommunications","volume":"21 ","pages":"Pages 59-63"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S1005-8885(14)60511-2","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of China Universities of Posts and Telecommunications","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1005888514605112","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 2

Abstract

This paper proposes a method of blind multi-user detection algorithm based on signal sub-space estimation under the fading channels in the present of impulse noise. This algorithm adapts recursive least square (RLS) filter that can estimate the coefficients using only the signature waveform. In addition, to strengthen the ability of resisting the impulse noise, a new suppressive factor is induced, which can suppress the amplitude of the impulse, and improve the ability of convergence speed. Simulation results show that new RLS algorithm is more robust against consecutive impulse noise and have better convergence ability than conventional RLS. In addition, Compared to the least mean square (LMS) detector, the new robust RLS sub-space based method has better multi-address-inference (MAI) suppressing performance, especially, when channel degrades.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
衰落信道下的多用户检测
提出了一种基于信号子空间估计的衰落信道下脉冲噪声存在下的盲多用户检测算法。该算法采用递推最小二乘(RLS)滤波器,仅使用特征波形即可估计出系数。此外,为了增强抗脉冲噪声的能力,引入了一个新的抑制因子,可以抑制脉冲的幅值,提高收敛速度的能力。仿真结果表明,该算法对连续脉冲噪声具有较强的鲁棒性和较好的收敛能力。此外,与最小均方(LMS)检测器相比,基于鲁棒RLS子空间的新方法具有更好的多地址推理(MAI)抑制性能,特别是在信道退化时。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
0.50
自引率
0.00%
发文量
1878
期刊最新文献
Survey of outdoor and indoor architecture design in TVWS networks Effect of non-spherical atmospheric charged particles and atmospheric visibility on performance of satellite-ground quantum link and parameters simulation Novel high PSRR high-order temperature-compensated subthreshold MOS bandgap reference Anomaly detection in smart grid based on encoder-decoder framework with recurrent neural network Palm vein recognition method based on fusion of local Gabor histograms
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1