Driving Test Evaluation of Sensorless Vehicle Detection Method for In-motion Wireless Power Transfer

Katsuhiro Hata, Kensuke Hanajiri, T. Imura, H. Fujimoto, Y. Hori, Motoki Sato, D. Gunji
{"title":"Driving Test Evaluation of Sensorless Vehicle Detection Method for In-motion Wireless Power Transfer","authors":"Katsuhiro Hata, Kensuke Hanajiri, T. Imura, H. Fujimoto, Y. Hori, Motoki Sato, D. Gunji","doi":"10.23919/IPEC.2018.8508025","DOIUrl":null,"url":null,"abstract":"In-motion wireless power transfer (WPT) has the capability to drastically increase a cruising distance of electric vehicles (EVs). A vehicle detection technique is important for a road facility to reduce standby power consumption and to prevent an unnecessary magnetic field leakage. A sensorless vehicle detection method using voltage pulses has been proposed and fundamental experiments have been demonstrated with small-scale equipment. In this paper, a full-scale in-motion WPT system is implemented and a test vehicle is developed with the second generation wireless in-wheel motor (W-IWM2). The sensorless vehicle detection method is applied to the implemented in-motion WPT system and the feasibility of the proposed system is verified by the driving experiment with the test vehicle.","PeriodicalId":6610,"journal":{"name":"2018 International Power Electronics Conference (IPEC-Niigata 2018 -ECCE Asia)","volume":"23 1","pages":"663-668"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Power Electronics Conference (IPEC-Niigata 2018 -ECCE Asia)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/IPEC.2018.8508025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

In-motion wireless power transfer (WPT) has the capability to drastically increase a cruising distance of electric vehicles (EVs). A vehicle detection technique is important for a road facility to reduce standby power consumption and to prevent an unnecessary magnetic field leakage. A sensorless vehicle detection method using voltage pulses has been proposed and fundamental experiments have been demonstrated with small-scale equipment. In this paper, a full-scale in-motion WPT system is implemented and a test vehicle is developed with the second generation wireless in-wheel motor (W-IWM2). The sensorless vehicle detection method is applied to the implemented in-motion WPT system and the feasibility of the proposed system is verified by the driving experiment with the test vehicle.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
运动无线电力传输无传感器车辆检测方法的驾驶测试评估
动态无线电力传输(WPT)能够大幅增加电动汽车的巡航距离。车辆检测技术对于道路设施降低待机功耗和防止不必要的磁场泄漏非常重要。提出了一种基于电压脉冲的无传感器车辆检测方法,并在小型设备上进行了基础实验验证。本文采用第二代无线轮毂电机(W-IWM2),实现了全尺寸的运动中WPT系统,并研制了一辆试验车。将无传感器车辆检测方法应用于已实现的运动WPT系统,并通过测试车的行驶实验验证了所提系统的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Flying Capacitor Resonant Pole Inverter with Direct Inductor Current Feedback Comparative Study of Single-Phase Fundamental Component Frequency Estimation Schemes under Time-varying Harmonic Distortion Operation Magnet Arrangement suitable for Large Air Gap Length in Linear PM Vernier Motor Fall Prevention and Vibration Suppression of Wheelchair Using Rider Motion State New Module with Isolated Half Bridge or Isolated Full Bridge for Modular Medium voltage converter
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1