Automated Wafer Defect Classification using a Convolutional Neural Network Augmented with Distributed Computing

Hairong Lei, Cho-Huak Teh, Hetong Li, Po-Hsuan Lee, Wei Fang
{"title":"Automated Wafer Defect Classification using a Convolutional Neural Network Augmented with Distributed Computing","authors":"Hairong Lei, Cho-Huak Teh, Hetong Li, Po-Hsuan Lee, Wei Fang","doi":"10.1109/ASMC49169.2020.9185253","DOIUrl":null,"url":null,"abstract":"This research compares the traditional machine learning algorithms and deep learning technology. We report our distributed computing convolutional neural network deep learning platform design and results in wafer defect classification. The result shows that the classification accuracy and purity performance is better than that of traditional machine learning models like Random Forest.","PeriodicalId":6771,"journal":{"name":"2020 31st Annual SEMI Advanced Semiconductor Manufacturing Conference (ASMC)","volume":"9 9 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 31st Annual SEMI Advanced Semiconductor Manufacturing Conference (ASMC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASMC49169.2020.9185253","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

This research compares the traditional machine learning algorithms and deep learning technology. We report our distributed computing convolutional neural network deep learning platform design and results in wafer defect classification. The result shows that the classification accuracy and purity performance is better than that of traditional machine learning models like Random Forest.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于卷积神经网络和分布式计算的晶圆缺陷自动分类
本研究比较了传统机器学习算法和深度学习技术。我们报告了分布式计算卷积神经网络深度学习平台的设计和晶圆缺陷分类的结果。结果表明,分类精度和纯度性能优于传统的机器学习模型,如随机森林。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Systematic Missing Pattern Defects Introduced by Topcoat Change at PC Lithography: A Case Study in the Tandem Usage of Inspection Methods Computational Process Control Compatible Dimensional Metrology Tool: Through-focus Scanning Optical Microscopy Characterization of Sub-micron Metal Line Arrays Using Picosecond Ultrasonics An Artificial Neural Network Based Algorithm For Real Time Dispatching Decisions A Framework for Semi-Automated Fault Detection Configuration with Automated Feature Extraction and Limits Setting
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1