G. A. Souza, M. E. Pietro, G. B. Appetecchi, A. Mele
{"title":"Molecular Features and Transport Properties of Dbu Based Protic Ionic Liquids","authors":"G. A. Souza, M. E. Pietro, G. B. Appetecchi, A. Mele","doi":"10.3303/CET2186188","DOIUrl":null,"url":null,"abstract":"High vapor pressure and flammability are some disadvantages of organic solvents currently used in chemical processes. In this scenario, protic ionic liquids (PILs) became a promising alternative to replace conventional solvents due to their interesting physicochemical properties. Understanding the charge transport and molecular features governing PILs is still required to allow their implementation in current and new technologies. Thus, the present work reports the study of PILs based on the 1,8-diazabicyclo-[5,4,0]-undec-7-ene (DBU) cation and two anions obtained from strong acids, trifluoromethylsulfonate (TFO-) and bis(trifluoromethylsulfonyl)imide (TFSI-) using different NMR techniques. 1H NMR spectra confirm that the high acidity of the PILs constituents is a determinant factor governing their features. Moreover, information on the transport properties of the PILs is obtained by diffusion NMR. The results show a peculiar behavior of the acidic proton, indicative of a different mechanism of charge transport in these systems.","PeriodicalId":9695,"journal":{"name":"Chemical engineering transactions","volume":"38 1","pages":"1123-1128"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical engineering transactions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3303/CET2186188","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Chemical Engineering","Score":null,"Total":0}
引用次数: 0
Abstract
High vapor pressure and flammability are some disadvantages of organic solvents currently used in chemical processes. In this scenario, protic ionic liquids (PILs) became a promising alternative to replace conventional solvents due to their interesting physicochemical properties. Understanding the charge transport and molecular features governing PILs is still required to allow their implementation in current and new technologies. Thus, the present work reports the study of PILs based on the 1,8-diazabicyclo-[5,4,0]-undec-7-ene (DBU) cation and two anions obtained from strong acids, trifluoromethylsulfonate (TFO-) and bis(trifluoromethylsulfonyl)imide (TFSI-) using different NMR techniques. 1H NMR spectra confirm that the high acidity of the PILs constituents is a determinant factor governing their features. Moreover, information on the transport properties of the PILs is obtained by diffusion NMR. The results show a peculiar behavior of the acidic proton, indicative of a different mechanism of charge transport in these systems.
期刊介绍:
Chemical Engineering Transactions (CET) aims to be a leading international journal for publication of original research and review articles in chemical, process, and environmental engineering. CET begin in 2002 as a vehicle for publication of high-quality papers in chemical engineering, connected with leading international conferences. In 2014, CET opened a new era as an internationally-recognised journal. Articles containing original research results, covering any aspect from molecular phenomena through to industrial case studies and design, with a strong influence of chemical engineering methodologies and ethos are particularly welcome. We encourage state-of-the-art contributions relating to the future of industrial processing, sustainable design, as well as transdisciplinary research that goes beyond the conventional bounds of chemical engineering. Short reviews on hot topics, emerging technologies, and other areas of high interest should highlight unsolved challenges and provide clear directions for future research. The journal publishes periodically with approximately 6 volumes per year. Core topic areas: -Batch processing- Biotechnology- Circular economy and integration- Environmental engineering- Fluid flow and fluid mechanics- Green materials and processing- Heat and mass transfer- Innovation engineering- Life cycle analysis and optimisation- Modelling and simulation- Operations and supply chain management- Particle technology- Process dynamics, flexibility, and control- Process integration and design- Process intensification and optimisation- Process safety- Product development- Reaction engineering- Renewable energy- Separation processes- Smart industry, city, and agriculture- Sustainability- Systems engineering- Thermodynamic- Waste minimisation, processing and management- Water and wastewater engineering