An origami-based adaptive vibration isolator with Yoshimura-patterned reconfigurable module

IF 2.4 3区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Journal of Intelligent Material Systems and Structures Pub Date : 2023-04-12 DOI:10.1177/1045389X231164529
Jong-Eun Suh, Jae-Hung Han
{"title":"An origami-based adaptive vibration isolator with Yoshimura-patterned reconfigurable module","authors":"Jong-Eun Suh, Jae-Hung Han","doi":"10.1177/1045389X231164529","DOIUrl":null,"url":null,"abstract":"In this paper, a novel concept of the adaptive vibration isolator is presented. The proposed adaptive isolator is based on the thin-walled Yoshimura-patterned tube, which is able to reconfigure its shape to tune the stiffness. Multiple numbers of reconfigurable modules compose the proposed vibration isolator; thus, the force transmissibility of the isolator can be adjusted by systematic reconfiguration of the modules to show the best performance for the subjected vibration environment. The paper presents the analytical and experimental analysis of the force transmissibility of the proposed adaptive vibration isolator. The dynamic equation of the motion for the isolator system is established, and the force transmissibility is analyzed for the various configuration that a single design can have. The prototype of the proposed adaptive isolator is manufactured with an embedded actuation mechanism for reconfiguration. The performance of the isolator is experimentally confirmed through the vibration test of the fabricated prototype. Both the results of the analytical and the experimental investigation well demonstrate the adaptive characteristics of the proposed isolator concept.","PeriodicalId":16121,"journal":{"name":"Journal of Intelligent Material Systems and Structures","volume":"3 1","pages":"2157 - 2171"},"PeriodicalIF":2.4000,"publicationDate":"2023-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Intelligent Material Systems and Structures","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1177/1045389X231164529","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, a novel concept of the adaptive vibration isolator is presented. The proposed adaptive isolator is based on the thin-walled Yoshimura-patterned tube, which is able to reconfigure its shape to tune the stiffness. Multiple numbers of reconfigurable modules compose the proposed vibration isolator; thus, the force transmissibility of the isolator can be adjusted by systematic reconfiguration of the modules to show the best performance for the subjected vibration environment. The paper presents the analytical and experimental analysis of the force transmissibility of the proposed adaptive vibration isolator. The dynamic equation of the motion for the isolator system is established, and the force transmissibility is analyzed for the various configuration that a single design can have. The prototype of the proposed adaptive isolator is manufactured with an embedded actuation mechanism for reconfiguration. The performance of the isolator is experimentally confirmed through the vibration test of the fabricated prototype. Both the results of the analytical and the experimental investigation well demonstrate the adaptive characteristics of the proposed isolator concept.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于吉村图可重构模块的折纸自适应隔振器
本文提出了自适应隔振器的新概念。所提出的自适应隔离器是基于薄壁吉村图案管,它能够重新配置其形状来调整刚度。该隔振器由多个可重构模块组成;因此,隔振器的传力率可以通过系统地重新配置模块来调整,使其在受振环境中表现出最佳的性能。本文对所提出的自适应隔振器的传力率进行了分析和实验分析。建立了隔振系统的运动动力学方程,分析了隔振系统在不同构型下的传力率。所提出的自适应隔离器的原型是用嵌入式驱动机构进行重构。通过样机的振动试验,验证了该隔振器的性能。分析结果和实验结果都很好地证明了所提出的隔离器概念的自适应特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Intelligent Material Systems and Structures
Journal of Intelligent Material Systems and Structures 工程技术-材料科学:综合
CiteScore
5.40
自引率
11.10%
发文量
126
审稿时长
4.7 months
期刊介绍: The Journal of Intelligent Materials Systems and Structures is an international peer-reviewed journal that publishes the highest quality original research reporting the results of experimental or theoretical work on any aspect of intelligent materials systems and/or structures research also called smart structure, smart materials, active materials, adaptive structures and adaptive materials.
期刊最新文献
A modified parametric model to predict visco-elastic properties of magneto-rheological elastomers at non-LVE region Simultaneous position and force control of a SMA-actuated continuum robotic module A facile method to fabricate auxetic polymer foams A low-frequency multidirectional piezoelectric vibration energy harvester using a universal joint structure Development of a fail-safe magnetorheological fluid device using electro and permanent magnets
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1