{"title":"Depth Recovery from Light Field Using Focal Stack Symmetry","authors":"Haiting Lin, Can Chen, S. B. Kang, Jingyi Yu","doi":"10.1109/ICCV.2015.394","DOIUrl":null,"url":null,"abstract":"We describe a technique to recover depth from a light field (LF) using two proposed features of the LF focal stack. One feature is the property that non-occluding pixels exhibit symmetry along the focal depth dimension centered at the in-focus slice. The other is a data consistency measure based on analysis-by-synthesis, i.e., the difference between the synthesized focal stack given the hypothesized depth map and that from the LF. These terms are used in an iterative optimization framework to extract scene depth. Experimental results on real Lytro and Raytrix data demonstrate that our technique outperforms state-of-the-art solutions and is significantly more robust to noise and under-sampling.","PeriodicalId":6633,"journal":{"name":"2015 IEEE International Conference on Computer Vision (ICCV)","volume":"66 1","pages":"3451-3459"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"134","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Computer Vision (ICCV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.2015.394","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 134
Abstract
We describe a technique to recover depth from a light field (LF) using two proposed features of the LF focal stack. One feature is the property that non-occluding pixels exhibit symmetry along the focal depth dimension centered at the in-focus slice. The other is a data consistency measure based on analysis-by-synthesis, i.e., the difference between the synthesized focal stack given the hypothesized depth map and that from the LF. These terms are used in an iterative optimization framework to extract scene depth. Experimental results on real Lytro and Raytrix data demonstrate that our technique outperforms state-of-the-art solutions and is significantly more robust to noise and under-sampling.