Depth Recovery from Light Field Using Focal Stack Symmetry

Haiting Lin, Can Chen, S. B. Kang, Jingyi Yu
{"title":"Depth Recovery from Light Field Using Focal Stack Symmetry","authors":"Haiting Lin, Can Chen, S. B. Kang, Jingyi Yu","doi":"10.1109/ICCV.2015.394","DOIUrl":null,"url":null,"abstract":"We describe a technique to recover depth from a light field (LF) using two proposed features of the LF focal stack. One feature is the property that non-occluding pixels exhibit symmetry along the focal depth dimension centered at the in-focus slice. The other is a data consistency measure based on analysis-by-synthesis, i.e., the difference between the synthesized focal stack given the hypothesized depth map and that from the LF. These terms are used in an iterative optimization framework to extract scene depth. Experimental results on real Lytro and Raytrix data demonstrate that our technique outperforms state-of-the-art solutions and is significantly more robust to noise and under-sampling.","PeriodicalId":6633,"journal":{"name":"2015 IEEE International Conference on Computer Vision (ICCV)","volume":"66 1","pages":"3451-3459"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"134","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Computer Vision (ICCV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.2015.394","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 134

Abstract

We describe a technique to recover depth from a light field (LF) using two proposed features of the LF focal stack. One feature is the property that non-occluding pixels exhibit symmetry along the focal depth dimension centered at the in-focus slice. The other is a data consistency measure based on analysis-by-synthesis, i.e., the difference between the synthesized focal stack given the hypothesized depth map and that from the LF. These terms are used in an iterative optimization framework to extract scene depth. Experimental results on real Lytro and Raytrix data demonstrate that our technique outperforms state-of-the-art solutions and is significantly more robust to noise and under-sampling.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用焦叠对称的光场深度恢复
我们描述了一种利用光场焦叠的两个特征从光场(LF)中恢复深度的技术。其中一个特征是,非遮挡像素沿聚焦切片为中心的焦深度维度呈现对称性。另一个是基于合成分析的数据一致性度量,即给定假设深度图的合成震源叠加与LF的震源叠加之间的差异。这些术语在迭代优化框架中用于提取场景深度。在Lytro和Raytrix实际数据上的实验结果表明,我们的技术优于最先进的解决方案,并且对噪声和欠采样的鲁棒性更强。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Listening with Your Eyes: Towards a Practical Visual Speech Recognition System Using Deep Boltzmann Machines Self-Calibration of Optical Lenses Single Image Pop-Up from Discriminatively Learned Parts Multi-task Recurrent Neural Network for Immediacy Prediction Low-Rank Tensor Approximation with Laplacian Scale Mixture Modeling for Multiframe Image Denoising
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1