A Perspective on Metal Single Atom- Based Electrocatalytsts towards Hydrogen Peroxide Production

Thi Hong Chuong Nguyen, Hieu Le Trung, Son Le Lam, M. T. Nguyen Dinh, Chinh-Chien Nguyen, Q. Le Van
{"title":"A Perspective on Metal Single Atom- Based Electrocatalytsts towards Hydrogen Peroxide Production","authors":"Thi Hong Chuong Nguyen, Hieu Le Trung, Son Le Lam, M. T. Nguyen Dinh, Chinh-Chien Nguyen, Q. Le Van","doi":"10.51316/jca.2022.052","DOIUrl":null,"url":null,"abstract":"The green production of hydrogen peroxide has attracted considerable attention owing to the urge for an alternative production method to the current production. Electrocatalytic reduction via the 2e- pathway has emerged as the brightest approach. However, the finding of catalysts with high efficiency and selectivity to provide a proper interaction between active sites and *OOH is remaining as the primary obstacle. Employing metal single-atom catalysts (SACs) offers a potential manner to address those challenges. The presented review aims to provide cutting-edge development of a single metal catalyst for electrocatalytic H2O2 production. Also, perspective is laid out to propose novel approaches for material development in the future","PeriodicalId":23507,"journal":{"name":"Vietnam Journal of Catalysis and Adsorption","volume":"66 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vietnam Journal of Catalysis and Adsorption","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.51316/jca.2022.052","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The green production of hydrogen peroxide has attracted considerable attention owing to the urge for an alternative production method to the current production. Electrocatalytic reduction via the 2e- pathway has emerged as the brightest approach. However, the finding of catalysts with high efficiency and selectivity to provide a proper interaction between active sites and *OOH is remaining as the primary obstacle. Employing metal single-atom catalysts (SACs) offers a potential manner to address those challenges. The presented review aims to provide cutting-edge development of a single metal catalyst for electrocatalytic H2O2 production. Also, perspective is laid out to propose novel approaches for material development in the future
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
金属单原子电催化剂在过氧化氢生产中的应用前景
双氧水的绿色生产已经引起了相当大的关注,因为迫切需要一种替代现有生产方法的生产方法。通过2e-途径的电催化还原已成为最有前途的方法。然而,寻找具有高效和选择性的催化剂来提供活性位点与*OOH之间的适当相互作用仍然是主要的障碍。使用金属单原子催化剂(SACs)为解决这些挑战提供了一种潜在的方法。本文综述了电催化生产H2O2的单金属催化剂的最新研究进展。此外,展望了未来材料发展的新途径
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Preparation of graphene from polyethylene terephthalate (PET) bottle wastes and its use for the removal of Methylene blue from aqueous solution Synthesis and application of biochar from agricultural by-products. Effect of pyrolysis temperature on the acid-base properties of biochar Synthesized MgFe2O4 nanoparticles to remove Pb2+ from aqueous solution Fabrication of activated carbon from polyethylene terephthalate plastic waste (PET) and their application for the removal of organic dyes in aqueous solution by chemical method A novel adsorbent based electroplating sludge – rice husk char for removal of methylene blue and ciprofloxacin in aqueous solution
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1