{"title":"Experimental Studies of Evolution and Eco-Evo Dynamics in Guppies (Poecilia reticulata)","authors":"D. Reznick, J. Travis","doi":"10.1146/ANNUREV-ECOLSYS-110218-024926","DOIUrl":null,"url":null,"abstract":"Guppies in Trinidad range across aquatic environments with fish communities that vary in risk of predation. These communities are often discrete, separated by waterfalls, with high-predation communities downstream and low-predation communities upstream. This gradient is repeated in many rivers; in each one, we see the same divergence between guppy populations in life history, behavior, morphology, and physiology. We have shown that the agent of selection on the life history, behavior, and physiology in low-predation communities is high population density and the cascade of ecological effects that stems from it. In effect, guppy populations modify their ecosystem and, in so doing, impose selection on themselves and shape their own evolution, which further changes the ecosystem. Evolution unfolds rapidly in this system, which has enabled us to study the dynamics of the process, not just its end points. Those studies enable us to answer some very general questions in ecology and evolutionary biology.","PeriodicalId":7988,"journal":{"name":"Annual Review of Ecology, Evolution, and Systematics","volume":"1 1","pages":""},"PeriodicalIF":11.2000,"publicationDate":"2019-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"33","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Review of Ecology, Evolution, and Systematics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1146/ANNUREV-ECOLSYS-110218-024926","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 33
Abstract
Guppies in Trinidad range across aquatic environments with fish communities that vary in risk of predation. These communities are often discrete, separated by waterfalls, with high-predation communities downstream and low-predation communities upstream. This gradient is repeated in many rivers; in each one, we see the same divergence between guppy populations in life history, behavior, morphology, and physiology. We have shown that the agent of selection on the life history, behavior, and physiology in low-predation communities is high population density and the cascade of ecological effects that stems from it. In effect, guppy populations modify their ecosystem and, in so doing, impose selection on themselves and shape their own evolution, which further changes the ecosystem. Evolution unfolds rapidly in this system, which has enabled us to study the dynamics of the process, not just its end points. Those studies enable us to answer some very general questions in ecology and evolutionary biology.
期刊介绍:
The Annual Review of Ecology, Evolution, and Systematics is a scholarly publication that has been in circulation since 1970. It focuses on important advancements in the areas of ecology, evolutionary biology, and systematics, with relevance to all forms of life on Earth. The journal features essay reviews that encompass various topics such as phylogeny, speciation, molecular evolution, behavior, evolutionary physiology, population dynamics, ecosystem processes, and applications in invasion biology, conservation, and environmental management. Recently, the current volume of the journal transitioned from a subscription-based model to open access through the Annual Reviews' Subscribe to Open program. Consequently, all articles published in the current volume are now available under a CC BY license.