{"title":"Automatic 3D vertebrae CT image active contour segmentation method based on weighted random forest","authors":"L. Xia, Gan Quan, Li Bing, Liu Xiao, Wang Bo","doi":"10.12086/OEE.2020.200002","DOIUrl":null,"url":null,"abstract":"In order to solve the problems of sensitive initial contours and inaccurate segmentation caused by active contour segmentation of CT images, this paper proposes an automatic 3D vertebral CT active contour segmentation method combined weighted random forest called “WRF-AC”. This method proposes a weighted random forest algorithm and an active contour energy function that includes edge energy. First, the weighted random forest is trained by extracting 3D Haar-like feature values of the vertebra CT, and the 'vertebra center' obtained is used as the initial contour of the segmentation. Then, the segmentation of the vertebra CT image is completed by solving the active contour energy function minimum containing the edge energy. The experimental results show that this method can segment the spine CT images more accurately and quickly on the same datasets to extract the vertebrae.","PeriodicalId":39552,"journal":{"name":"光电工程","volume":"47 1","pages":"200002"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"光电工程","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.12086/OEE.2020.200002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 2
Abstract
In order to solve the problems of sensitive initial contours and inaccurate segmentation caused by active contour segmentation of CT images, this paper proposes an automatic 3D vertebral CT active contour segmentation method combined weighted random forest called “WRF-AC”. This method proposes a weighted random forest algorithm and an active contour energy function that includes edge energy. First, the weighted random forest is trained by extracting 3D Haar-like feature values of the vertebra CT, and the 'vertebra center' obtained is used as the initial contour of the segmentation. Then, the segmentation of the vertebra CT image is completed by solving the active contour energy function minimum containing the edge energy. The experimental results show that this method can segment the spine CT images more accurately and quickly on the same datasets to extract the vertebrae.
光电工程Engineering-Electrical and Electronic Engineering
CiteScore
2.00
自引率
0.00%
发文量
6622
期刊介绍:
Founded in 1974, Opto-Electronic Engineering is an academic journal under the supervision of the Chinese Academy of Sciences and co-sponsored by the Institute of Optoelectronic Technology of the Chinese Academy of Sciences (IOTC) and the Optical Society of China (OSC). It is a core journal in Chinese and a core journal in Chinese science and technology, and it is included in domestic and international databases, such as Scopus, CA, CSCD, CNKI, and Wanfang.
Opto-Electronic Engineering is a peer-reviewed journal with subject areas including not only the basic disciplines of optics and electricity, but also engineering research and engineering applications. Optoelectronic Engineering mainly publishes scientific research progress, original results and reviews in the field of optoelectronics, and publishes related topics for hot issues and frontier subjects.
The main directions of the journal include:
- Optical design and optical engineering
- Photovoltaic technology and applications
- Lasers, optical fibres and communications
- Optical materials and photonic devices
- Optical Signal Processing