Research on joint coding for underwater single-photon video communication

Q3 Engineering 光电工程 Pub Date : 2021-05-28 DOI:10.12086/OEE.2021.200327
Dai Weihui, Yan Qiurong, Wang Ming, Honggao Zhu, Yang Cheng
{"title":"Research on joint coding for underwater single-photon video communication","authors":"Dai Weihui, Yan Qiurong, Wang Ming, Honggao Zhu, Yang Cheng","doi":"10.12086/OEE.2021.200327","DOIUrl":null,"url":null,"abstract":"In order to achieve effective and reliable video transmission, a video joint coding scheme based on dictionary learning and the concatenation of LT code and LDPC code is proposed for underwater single-photon com-munication system. Sparse coding based on dictionary learning greatly compresses the amount of video data. According to the deletion characteristic of underwater single-photon channel, using the LT-LDPC channel concatenated coding method can overcome the disadvantage of excessive decoding overhead of LT code. Aiming at the problem of decoding failure probability of LT coding, a double feedback mechanism for decoding success is proposed. The experimental results show that when the channel error rate is in the order of 10-2 and the video compression rate is 75.6%, the video frames can be reconstructed with an average peak signal-to-noise ratio (PSNR) of 37.4921 dB.","PeriodicalId":39552,"journal":{"name":"光电工程","volume":"37 1","pages":"200327"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"光电工程","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.12086/OEE.2021.200327","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

In order to achieve effective and reliable video transmission, a video joint coding scheme based on dictionary learning and the concatenation of LT code and LDPC code is proposed for underwater single-photon com-munication system. Sparse coding based on dictionary learning greatly compresses the amount of video data. According to the deletion characteristic of underwater single-photon channel, using the LT-LDPC channel concatenated coding method can overcome the disadvantage of excessive decoding overhead of LT code. Aiming at the problem of decoding failure probability of LT coding, a double feedback mechanism for decoding success is proposed. The experimental results show that when the channel error rate is in the order of 10-2 and the video compression rate is 75.6%, the video frames can be reconstructed with an average peak signal-to-noise ratio (PSNR) of 37.4921 dB.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
水下单光子视频通信联合编码研究
为了实现有效、可靠的视频传输,提出了一种基于字典学习和LT码与LDPC码拼接的水下单光子通信系统视频联合编码方案。基于字典学习的稀疏编码极大地压缩了视频数据量。根据水下单光子信道的删除特性,采用LT- ldpc信道级联编码方法可以克服LT码译码开销过大的缺点。针对LT编码的译码失败概率问题,提出了译码成功的双反馈机制。实验结果表明,当信道误码率为10-2,视频压缩率为75.6%时,重构的视频帧平均峰值信噪比(PSNR)为37.4921 dB。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
光电工程
光电工程 Engineering-Electrical and Electronic Engineering
CiteScore
2.00
自引率
0.00%
发文量
6622
期刊介绍: Founded in 1974, Opto-Electronic Engineering is an academic journal under the supervision of the Chinese Academy of Sciences and co-sponsored by the Institute of Optoelectronic Technology of the Chinese Academy of Sciences (IOTC) and the Optical Society of China (OSC). It is a core journal in Chinese and a core journal in Chinese science and technology, and it is included in domestic and international databases, such as Scopus, CA, CSCD, CNKI, and Wanfang. Opto-Electronic Engineering is a peer-reviewed journal with subject areas including not only the basic disciplines of optics and electricity, but also engineering research and engineering applications. Optoelectronic Engineering mainly publishes scientific research progress, original results and reviews in the field of optoelectronics, and publishes related topics for hot issues and frontier subjects. The main directions of the journal include: - Optical design and optical engineering - Photovoltaic technology and applications - Lasers, optical fibres and communications - Optical materials and photonic devices - Optical Signal Processing
期刊最新文献
The joint discriminative and generative learning for person re-identification of deep dual attention Fiber coupling technology of high brightness blue laser diode A few-shot learning based generative method for atmospheric polarization modelling Characteristics of wavefront correction using stacked liquid lens based on electrowetting-on-dielectric Research on joint coding for underwater single-photon video communication
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1