Ran Zhang, Gang Zheng, Bin Cheng, Junchun bai, Xianqi Lin, Kai Xiao, Yukun Wang, Qianyu Hou, Wenhong Sun
{"title":"AlGaN‐Based Solar‐Blind Ultraviolet Detector with a Response Wavelength of 217 nm","authors":"Ran Zhang, Gang Zheng, Bin Cheng, Junchun bai, Xianqi Lin, Kai Xiao, Yukun Wang, Qianyu Hou, Wenhong Sun","doi":"10.1002/pssa.202300231","DOIUrl":null,"url":null,"abstract":"The research of the high Al(x = 0.75) component has always been the focus of the AlGaN solar‐blind ultraviolet (UV) detector. However, due to the lattice and thermal mismatch between the AlGaN and the underlying substrate under existing mainstream heteroepitaxial growth methods, the large density of defects, e.g., point defects, screw dislocations, and edge dislocations, has hindered the performances of AlGaN‐based solar‐blind UV photodetectors. A short superlattice polarization‐induced P‐type doping growth technique is used to fabricate a high‐performance AlGaN‐based back‐illuminated solar‐blind UV p‐i‐n photodetector (PD) fabricated on sapphire substrates. The back‐illuminated AlGaN UV‐PD shows a high external quantum efficiency of 70.2%. The peak responsivity (R) reaches 123 mA W−1 at −5 V with a wavelength of 217 nm. Meanwhile, the dark current density is 2.21 × 10−8 A cm−2. Additionally, the UV/visible rejection ratio for the detectors exceeds four orders of magnitude, and the detectivity (D*) is calculated to be 6.7 × 1012 cm Hz1/2 W−1. The device performance parameters can be attributed to the quality of the epilayer and heterojunctions. This technology provides new ideas for nitride semiconductor materials, further bringing a breakthrough in a wide‐bandgap electronics device.","PeriodicalId":87717,"journal":{"name":"Physica status solidi (A): Applied research","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica status solidi (A): Applied research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/pssa.202300231","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The research of the high Al(x = 0.75) component has always been the focus of the AlGaN solar‐blind ultraviolet (UV) detector. However, due to the lattice and thermal mismatch between the AlGaN and the underlying substrate under existing mainstream heteroepitaxial growth methods, the large density of defects, e.g., point defects, screw dislocations, and edge dislocations, has hindered the performances of AlGaN‐based solar‐blind UV photodetectors. A short superlattice polarization‐induced P‐type doping growth technique is used to fabricate a high‐performance AlGaN‐based back‐illuminated solar‐blind UV p‐i‐n photodetector (PD) fabricated on sapphire substrates. The back‐illuminated AlGaN UV‐PD shows a high external quantum efficiency of 70.2%. The peak responsivity (R) reaches 123 mA W−1 at −5 V with a wavelength of 217 nm. Meanwhile, the dark current density is 2.21 × 10−8 A cm−2. Additionally, the UV/visible rejection ratio for the detectors exceeds four orders of magnitude, and the detectivity (D*) is calculated to be 6.7 × 1012 cm Hz1/2 W−1. The device performance parameters can be attributed to the quality of the epilayer and heterojunctions. This technology provides new ideas for nitride semiconductor materials, further bringing a breakthrough in a wide‐bandgap electronics device.
高Al(x = 0.75)组分的研究一直是AlGaN太阳盲紫外(UV)探测器的研究重点。然而,在现有的主流异质外延生长方法下,由于AlGaN与衬底之间的晶格和热失配,大密度的缺陷,如点缺陷、螺旋位错和边缘位错,阻碍了AlGaN基太阳盲紫外光电探测器的性能。采用短超晶格极化诱导P型掺杂生长技术,在蓝宝石衬底上制备了高性能AlGaN背光太阳盲UV P - i - n光电探测器(PD)。背光AlGaN UV - PD显示出70.2%的高外量子效率。在−5 V,波长为217 nm时,峰值响应度R达到123 mA W−1。暗电流密度为2.21 × 10−8 A cm−2。此外,探测器的UV/可见光抑制比超过4个数量级,探测率(D*)计算为6.7 × 1012 cm Hz1/2 W−1。器件性能参数可归因于薄膜和异质结的质量。该技术为氮化半导体材料提供了新的思路,进一步带来了宽带隙电子器件的突破。