Transport of Polymers in Low Permeability Carbonate Rocks

Haofeng Song, P. Ghosh, K. Mohanty
{"title":"Transport of Polymers in Low Permeability Carbonate Rocks","authors":"Haofeng Song, P. Ghosh, K. Mohanty","doi":"10.2118/206024-ms","DOIUrl":null,"url":null,"abstract":"\n Polymer transport and retention affect oil recovery and economic feasibility of EOR processes. Most studies on polymer transport have focused on sandstones with permeabilities (k) higher than 200 mD. A limited number of studies were conducted in carbonates with k less than 100 mD and very few in the presence of residual oil. In this work, transport of four polymers with different molecular weights (MW) and functional groups are studied in Edwards Yellow outcrop cores (k<50 mD) with and without residual oil saturation (Sor). The retention of polymers was estimated by both the material balance method and the double-bank method. The polymer concentration was measured by both the total organic carbon (TOC) analyzer and the capillary tube rheology. Partially hydrolyzed acrylamide (HPAM) polymers exhibited high retention (> 150 μg/g), inaccessible pore volume (IPV) greater than 7%, and high residual resistance factor (>9). A sulfonated polyacrylamide (AN132), showed low retentions (< 20 μg/g) and low IPV. The residual resistance factor (RRF) of AN132 in the water-saturated rock was less than 2, indicating little blocking of pore throats in these tight rocks. The retention and RRF of the AN132 polymer increased in the presence of residual oil saturation due to partial blocking of the smaller pore throats available for polymer propagation in an oil-wet core.","PeriodicalId":10896,"journal":{"name":"Day 1 Tue, September 21, 2021","volume":"84 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 1 Tue, September 21, 2021","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/206024-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Polymer transport and retention affect oil recovery and economic feasibility of EOR processes. Most studies on polymer transport have focused on sandstones with permeabilities (k) higher than 200 mD. A limited number of studies were conducted in carbonates with k less than 100 mD and very few in the presence of residual oil. In this work, transport of four polymers with different molecular weights (MW) and functional groups are studied in Edwards Yellow outcrop cores (k<50 mD) with and without residual oil saturation (Sor). The retention of polymers was estimated by both the material balance method and the double-bank method. The polymer concentration was measured by both the total organic carbon (TOC) analyzer and the capillary tube rheology. Partially hydrolyzed acrylamide (HPAM) polymers exhibited high retention (> 150 μg/g), inaccessible pore volume (IPV) greater than 7%, and high residual resistance factor (>9). A sulfonated polyacrylamide (AN132), showed low retentions (< 20 μg/g) and low IPV. The residual resistance factor (RRF) of AN132 in the water-saturated rock was less than 2, indicating little blocking of pore throats in these tight rocks. The retention and RRF of the AN132 polymer increased in the presence of residual oil saturation due to partial blocking of the smaller pore throats available for polymer propagation in an oil-wet core.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
低渗透碳酸盐岩中聚合物的输运
聚合物的运移和滞留影响着采收率和提高采收率的经济可行性。大多数关于聚合物输运的研究都集中在渗透率(k)高于200 mD的砂岩上。在渗透率(k)低于100 mD的碳酸盐岩中进行的研究数量有限,剩余油的存在也很少。本文研究了4种不同分子量(MW)和官能团的聚合物在爱德华黄露头岩心(k为150 μg/g)、不可达孔体积(IPV)大于7%、高残余阻力因子(>9)中的输运。磺化聚丙烯酰胺(AN132)具有较低的残留(< 20 μg/g)和较低的IPV。AN132在饱和水岩石中的残余阻力系数(RRF)小于2,表明这些致密岩石的孔喉几乎没有堵塞。在残余油饱和度存在的情况下,AN132聚合物的保留率和RRF增加,这是由于在油湿岩心中,可用于聚合物扩展的较小孔喉被部分阻塞。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Pollination Inspired Clustering Model for Wireless Sensor Network Optimization Three Phase Coil based Optimized Wireless Charging System for Electric Vehicles Wireless Power Transfer Device Based on RF Energy Circuit and Transformer Coupling Procedure Hybrid Micro-Energy Harvesting Model using WSN for Self-Sustainable Wireless Mobile Charging Application Automated Multimodal Fusion Technique for the Classification of Human Brain on Alzheimer’s Disorder
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1