A novel implementation for brain MRI noise reduction

G. Devi, S. Velliangiri, S. Alagumuthukrishnan
{"title":"A novel implementation for brain MRI noise reduction","authors":"G. Devi, S. Velliangiri, S. Alagumuthukrishnan","doi":"10.1063/5.0058059","DOIUrl":null,"url":null,"abstract":"In this paper proposed algorithm is based on Dual Tree-CWT and Nonlocal Mean filtering processes is used to eliminate Rician noise from the brain magnetic resonance images. The noise reduction is done using two stage processes, first sparse DT-CWT is applied, which allows for distinction of data directionality in the transform space and then Rotational invariant version of Non-Local Mean filter is applied. The proposed algorithm is tested with different Rician noise levels of brain MR Images. Even the Image is degraded by 15% Rician noise the PSNR and SSIM obtained are 23dB and 0.93 which is a better performance as compared to Anisotropic Diffusion Filter (ADF), Non local Maximum Likelihood (NLML), Nutrosophic Set Median Filter (NS median).","PeriodicalId":21797,"journal":{"name":"SEVENTH INTERNATIONAL SYMPOSIUM ON NEGATIVE IONS, BEAMS AND SOURCES (NIBS 2020)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SEVENTH INTERNATIONAL SYMPOSIUM ON NEGATIVE IONS, BEAMS AND SOURCES (NIBS 2020)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/5.0058059","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper proposed algorithm is based on Dual Tree-CWT and Nonlocal Mean filtering processes is used to eliminate Rician noise from the brain magnetic resonance images. The noise reduction is done using two stage processes, first sparse DT-CWT is applied, which allows for distinction of data directionality in the transform space and then Rotational invariant version of Non-Local Mean filter is applied. The proposed algorithm is tested with different Rician noise levels of brain MR Images. Even the Image is degraded by 15% Rician noise the PSNR and SSIM obtained are 23dB and 0.93 which is a better performance as compared to Anisotropic Diffusion Filter (ADF), Non local Maximum Likelihood (NLML), Nutrosophic Set Median Filter (NS median).
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种新的脑MRI降噪方法
本文提出了一种基于对偶树cwt和非局部均值滤波的脑磁共振图像去噪算法。降噪采用两阶段过程,首先应用稀疏DT-CWT,该方法允许在变换空间中区分数据的方向性,然后应用非局部均值滤波器的旋转不变版本。用不同噪声水平的脑磁共振图像对该算法进行了测试。在噪声降低15%的情况下,得到的PSNR和SSIM分别为23dB和0.93,优于各向异性扩散滤波(ADF)、非局部极大似然滤波(NLML)和营养集中值滤波(NS Median)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Dynamic analysis on supporting structure of air borne vehicle subjected to random vibrations Recent achievements in studies of negative beam formation and acceleration in the tandem accelerator at Budker Institute Experimental study on foam concrete with polypropylene fibers and Nylon fibers Prediction of negative hydrogen ion density in permanent magnet-based helicon ion source (HELEN) using deep learning techniques Analysis on slot curvature and contact stresses on Geneva wheel
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1