Optimization of Convolutional Neural Networks on Resource Constrained Devices

Arish S, Sharad Sinha, S. K G
{"title":"Optimization of Convolutional Neural Networks on Resource Constrained Devices","authors":"Arish S, Sharad Sinha, S. K G","doi":"10.1109/ISVLSI.2019.00013","DOIUrl":null,"url":null,"abstract":"Implementation of convolutional neural networks (CNNs) on resource constrained devices like FPGA (example: Zynq) etc. is important for intelligence in edge computing. This paper presents and discusses different hardware optimization methods that were employed to design a CNN model that is amenable to such devices, in general. Adaptive processing, exploitation of parallelism etc. are employed to show the superior performance of proposed methods over state of the art.","PeriodicalId":6703,"journal":{"name":"2019 IEEE Computer Society Annual Symposium on VLSI (ISVLSI)","volume":"26 1","pages":"19-24"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Computer Society Annual Symposium on VLSI (ISVLSI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISVLSI.2019.00013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

Implementation of convolutional neural networks (CNNs) on resource constrained devices like FPGA (example: Zynq) etc. is important for intelligence in edge computing. This paper presents and discusses different hardware optimization methods that were employed to design a CNN model that is amenable to such devices, in general. Adaptive processing, exploitation of parallelism etc. are employed to show the superior performance of proposed methods over state of the art.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
资源受限设备上卷积神经网络的优化
卷积神经网络(cnn)在FPGA(例如:Zynq)等资源受限设备上的实现对于边缘计算中的智能非常重要。本文提出并讨论了不同的硬件优化方法,用于设计一般适用于此类设备的CNN模型。采用自适应处理、利用并行性等来显示所提出的方法优于现有技术的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Ferroelectric FET Based TCAM Designs for Energy Efficient Computing Evaluation of Compilers Effects on OpenMP Soft Error Resiliency Towards Efficient Compact Network Training on Edge-Devices PageCmp: Bandwidth Efficient Page Deduplication through In-memory Page Comparison Improving Logic Optimization in Sequential Circuits using Majority-inverter Graphs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1