A 1.83µJ/classification nonlinear support-vector-machine-based patient-specific seizure classification SoC

Muhammad Awais Bin Altaf, J. Tillak, Y. Kifle, Jerald Yoo
{"title":"A 1.83µJ/classification nonlinear support-vector-machine-based patient-specific seizure classification SoC","authors":"Muhammad Awais Bin Altaf, J. Tillak, Y. Kifle, Jerald Yoo","doi":"10.1109/ISSCC.2013.6487654","DOIUrl":null,"url":null,"abstract":"To mitigate seizure-affected patients, SoCs [1-3] have been developed 1) to detect electrical onset of seizure seconds before the clinical onset, and 2) to combine the SoC with neurostimulation. In particular, having detection delay of <;2s (for real-time suppression) while maintaining high detection rate is challenging [4]. However, [2] had a long latency (13.5s) and [3] suffered from a low detection rate (84.4%) with a high false alarm (max. 14.7%) due to an intermittent limit of the Linear Support Vector Machine (LSVM). In this paper, we present a Non-Linear SVM (NLSVM)-based seizure detection SoC which ensures a >95% detection accuracy, <;1% false alarm and <;2s latency.","PeriodicalId":6378,"journal":{"name":"2013 IEEE International Solid-State Circuits Conference Digest of Technical Papers","volume":"57 1","pages":"100-101"},"PeriodicalIF":0.0000,"publicationDate":"2013-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"45","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Solid-State Circuits Conference Digest of Technical Papers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSCC.2013.6487654","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 45

Abstract

To mitigate seizure-affected patients, SoCs [1-3] have been developed 1) to detect electrical onset of seizure seconds before the clinical onset, and 2) to combine the SoC with neurostimulation. In particular, having detection delay of <;2s (for real-time suppression) while maintaining high detection rate is challenging [4]. However, [2] had a long latency (13.5s) and [3] suffered from a low detection rate (84.4%) with a high false alarm (max. 14.7%) due to an intermittent limit of the Linear Support Vector Machine (LSVM). In this paper, we present a Non-Linear SVM (NLSVM)-based seizure detection SoC which ensures a >95% detection accuracy, <;1% false alarm and <;2s latency.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于1.83µJ/classification非线性支持向量机的患者特异性癫痫分类SoC
为了减轻癫痫患者的影响,SoC[1-3]已经被开发出来,1)在临床发作前几秒钟检测癫痫的电发作,2)将SoC与神经刺激相结合。其中,检测延时为95%检测准确率,虚警< 1%,延时< 2s。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A CMOS dual-switching power-supply modulator with 8% efficiency improvement for 20MHz LTE Envelope Tracking RF power amplifiers A 3.4pJ FeRAM-enabled D flip-flop in 0.13µm CMOS for nonvolatile processing in digital systems Razor-lite: A side-channel error-detection register for timing-margin recovery in 45nm SOI CMOS Self-super-cutoff power gating with state retention on a 0.3V 0.29fJ/cycle/gate 32b RISC core in 0.13µm CMOS A fully intraocular 0.0169mm2/pixel 512-channel self-calibrating epiretinal prosthesis in 65nm CMOS
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1