C. Zimmermann, F. Schlerka, C. Nömayr, Rainer Müller, H. Nesswetter, A. Übner, Marco Gruber, Christian Grünwald
{"title":"Development and Qualification of the Eurostar Neo Solar Array","authors":"C. Zimmermann, F. Schlerka, C. Nömayr, Rainer Müller, H. Nesswetter, A. Übner, Marco Gruber, Christian Grünwald","doi":"10.1109/ESPC.2019.8932003","DOIUrl":null,"url":null,"abstract":"Airbus is currently developing the Eurostar Neo telecommunication platform, supported by ESA in the frame of the ARTES 14 program. It is capable to support payloads up to 25 kW, which required major advances in the thermal as well as the electrical subsystem. The first telecommunication satellites based on the Eurostar Neo platform will be the Eutelsat Hotbird satellites 13F and G, to be launched in 2021. One of the central newly developed subsystems for Eurostar Neo is a solar array that is capable to deliver ≈ 50% more power in the same volume and with the same weight. This is achieved through a hybrid array concept, which combines a conventional rigid panel array with lightweight, semi-rigid lateral panels. This central element of the new array features a wealth of new technologies, ranging from a charge dissipative substrate and C-spring hinges with electrical functionality to new ion-erosion resistant Al interconnects and 4-junction solar cells with 28.5% efficiency at 1×1015 1MeV e-/cm2. The design of the semi-rigid photovoltaic assembly (PVA) is outlined in detail, as well as the results of key qualification tests on component and on PVA level. In contrast to classical arrays, PVA level testing required not only thermal cycle testing, but also the verification of new loads like sine-vibration testing under vacuum. Finally, the potential for further evolution of this array concept is discussed.","PeriodicalId":6734,"journal":{"name":"2019 European Space Power Conference (ESPC)","volume":"22 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 European Space Power Conference (ESPC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ESPC.2019.8932003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Airbus is currently developing the Eurostar Neo telecommunication platform, supported by ESA in the frame of the ARTES 14 program. It is capable to support payloads up to 25 kW, which required major advances in the thermal as well as the electrical subsystem. The first telecommunication satellites based on the Eurostar Neo platform will be the Eutelsat Hotbird satellites 13F and G, to be launched in 2021. One of the central newly developed subsystems for Eurostar Neo is a solar array that is capable to deliver ≈ 50% more power in the same volume and with the same weight. This is achieved through a hybrid array concept, which combines a conventional rigid panel array with lightweight, semi-rigid lateral panels. This central element of the new array features a wealth of new technologies, ranging from a charge dissipative substrate and C-spring hinges with electrical functionality to new ion-erosion resistant Al interconnects and 4-junction solar cells with 28.5% efficiency at 1×1015 1MeV e-/cm2. The design of the semi-rigid photovoltaic assembly (PVA) is outlined in detail, as well as the results of key qualification tests on component and on PVA level. In contrast to classical arrays, PVA level testing required not only thermal cycle testing, but also the verification of new loads like sine-vibration testing under vacuum. Finally, the potential for further evolution of this array concept is discussed.