Donath Damian, Modester Damas, J. Wensman, M. Berg
{"title":"Diversity of Viruses in Hard Ticks (Ixodidae) from Select Areas of a Wildlife-livestock Interface Ecosystem at Mikumi National Park, Tanzania","authors":"Donath Damian, Modester Damas, J. Wensman, M. Berg","doi":"10.11648/J.AJBIO.20200806.12","DOIUrl":null,"url":null,"abstract":"Many of the recent emerging infectious diseases have occurred due to the transmission of the viruses that have wildlife reservoirs. Arthropods, such as ticks, are known to be important vectors for spreading viruses and other pathogens from wildlife to domestic animals and humans. In the present study, we explored the diversity of viruses in hard ticks (Ixodidae) from select areas of a wildlife-livestock interface ecosystem at Mikumi National Park, Tanzania using a metagenomic approach. cDNA and DNA were amplified with random amplification and Illumina high-throughput sequencing was performed. The high-throughput sequenced data was imported to the CLC genomic workbench and trimmed based on quality (Q = 20) and length (≥ 50). The trimmed reads were assembled and annotated through Blastx using Diamond against the National Center for Biotechnology Information non-redundant database and its viral database. The MEGAN Community was used to analyze and to compare the taxonomy of the viral community. The obtained contigs and singletons were further subjected to alignment and mapping against reference sequences. The viral sequences identified were classified into bacteria, vertebrates, and invertebrates, plants, and protozoans viruses. Sequences related to known viral families; Retroviridae, Flaviviridae, Rhabdoviridae, Chuviridae, Orthomyxoviridae, Phenuiviridae, Totiviridae, Rhabdoviridae, Parvoviridae, Caulimoviridae, Mimiviridae and several Phages were reported. This result indicates that there are many viruses present in the study region, which we are not aware of and do not know the role they have or if they have the potential to spread to other species and cause diseases. Therefore, further studies are required to delineate the viral community present in the region over a large scale.","PeriodicalId":7478,"journal":{"name":"American Journal of BioScience","volume":"58 1","pages":"150"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Journal of BioScience","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11648/J.AJBIO.20200806.12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Many of the recent emerging infectious diseases have occurred due to the transmission of the viruses that have wildlife reservoirs. Arthropods, such as ticks, are known to be important vectors for spreading viruses and other pathogens from wildlife to domestic animals and humans. In the present study, we explored the diversity of viruses in hard ticks (Ixodidae) from select areas of a wildlife-livestock interface ecosystem at Mikumi National Park, Tanzania using a metagenomic approach. cDNA and DNA were amplified with random amplification and Illumina high-throughput sequencing was performed. The high-throughput sequenced data was imported to the CLC genomic workbench and trimmed based on quality (Q = 20) and length (≥ 50). The trimmed reads were assembled and annotated through Blastx using Diamond against the National Center for Biotechnology Information non-redundant database and its viral database. The MEGAN Community was used to analyze and to compare the taxonomy of the viral community. The obtained contigs and singletons were further subjected to alignment and mapping against reference sequences. The viral sequences identified were classified into bacteria, vertebrates, and invertebrates, plants, and protozoans viruses. Sequences related to known viral families; Retroviridae, Flaviviridae, Rhabdoviridae, Chuviridae, Orthomyxoviridae, Phenuiviridae, Totiviridae, Rhabdoviridae, Parvoviridae, Caulimoviridae, Mimiviridae and several Phages were reported. This result indicates that there are many viruses present in the study region, which we are not aware of and do not know the role they have or if they have the potential to spread to other species and cause diseases. Therefore, further studies are required to delineate the viral community present in the region over a large scale.