Liu Hong, Zhai Changxin, Wen Yan-yan, Xinzhuo Lei, Du Zongyu
{"title":"An optimized light source layout model for visible light communication system","authors":"Liu Hong, Zhai Changxin, Wen Yan-yan, Xinzhuo Lei, Du Zongyu","doi":"10.12086/OEE.2020.190565","DOIUrl":null,"url":null,"abstract":"To solve the unevenness of distributions of optical illuminance and power in visible light communication system, a light source layout based on multi-population genetic algorithm is proposed. Taking 15 LED lamps as an example, the position coordinates were optimized under the fitness function related to variance of received power through the co-evolution of multi-populations. The simulation results on Matlab R2016a showed that, after being optimized, the distribution of power was evener intuitively, the variance of power reached 1.5744 dBm, the illuminance fell in a range between 889 lx and 1009 lx and the uniformity ratio of illuminance was 91.73%, all of which were better than those of the layout optimized by traditional genetic algorithm and the rectangular layout optimized by multi-population genetic algorithm. This experiment provides a feasible solution for optimizing the visible light communication system so that users can have a more comfortable communication trip in this system.","PeriodicalId":39552,"journal":{"name":"光电工程","volume":"3 1","pages":"190565"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"光电工程","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.12086/OEE.2020.190565","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0
Abstract
To solve the unevenness of distributions of optical illuminance and power in visible light communication system, a light source layout based on multi-population genetic algorithm is proposed. Taking 15 LED lamps as an example, the position coordinates were optimized under the fitness function related to variance of received power through the co-evolution of multi-populations. The simulation results on Matlab R2016a showed that, after being optimized, the distribution of power was evener intuitively, the variance of power reached 1.5744 dBm, the illuminance fell in a range between 889 lx and 1009 lx and the uniformity ratio of illuminance was 91.73%, all of which were better than those of the layout optimized by traditional genetic algorithm and the rectangular layout optimized by multi-population genetic algorithm. This experiment provides a feasible solution for optimizing the visible light communication system so that users can have a more comfortable communication trip in this system.
光电工程Engineering-Electrical and Electronic Engineering
CiteScore
2.00
自引率
0.00%
发文量
6622
期刊介绍:
Founded in 1974, Opto-Electronic Engineering is an academic journal under the supervision of the Chinese Academy of Sciences and co-sponsored by the Institute of Optoelectronic Technology of the Chinese Academy of Sciences (IOTC) and the Optical Society of China (OSC). It is a core journal in Chinese and a core journal in Chinese science and technology, and it is included in domestic and international databases, such as Scopus, CA, CSCD, CNKI, and Wanfang.
Opto-Electronic Engineering is a peer-reviewed journal with subject areas including not only the basic disciplines of optics and electricity, but also engineering research and engineering applications. Optoelectronic Engineering mainly publishes scientific research progress, original results and reviews in the field of optoelectronics, and publishes related topics for hot issues and frontier subjects.
The main directions of the journal include:
- Optical design and optical engineering
- Photovoltaic technology and applications
- Lasers, optical fibres and communications
- Optical materials and photonic devices
- Optical Signal Processing