Study of Isobaric Interference in Quantification of Citrulline by Parallel Fragmentation Monitoring.

Q3 Physics and Astronomy Mass spectrometry Pub Date : 2014-04-01 DOI:10.5702/massspectrometry.S0030
E. W. Y. Ng, H. S. Lam, P. Ng, T. Poon
{"title":"Study of Isobaric Interference in Quantification of Citrulline by Parallel Fragmentation Monitoring.","authors":"E. W. Y. Ng, H. S. Lam, P. Ng, T. Poon","doi":"10.5702/massspectrometry.S0030","DOIUrl":null,"url":null,"abstract":"Parallel Fragmentation Monitoring (PFM), which is an analogue of selected reaction monitoring (SRM), is a recently developed method for quantification of small molecules by MALDI-TOF/TOF mass spectrometry (MS). It is well known that isobaric interference substances can be occasionally present in complex biological samples, and affect the accuracy of measurement by SRM. Unfortunately, by design it is not possible to assess whether isobaric interference happens in a SRM analysis. In contrast, the unique design of PFM should allow quick inspection for isobaric interference and subsequent correction. In this study, using arginine as an example, interference effect of isobaric structural analogs on the quantification of citrulline by PFM was evaluated. Our results showed that the presence of arginine affected the measured concentrations of citrulline standard solutions in a concentration dependent manner. Such interference could be observed readily in the MS/MS spectra, and contributed by [arginine+H-NH3](+) fragment ion. Because of having highly similar mass, (13)C-isotope of [arginine+H-NH3](+) fragment ion overlapped with monoisotope of [citrulline+H-NH3](+) fragment ion, which was used as the report ion for quantification. However, such interference could be mathematically eliminated or minimized through estimation of the signal intensity of the (13)C-isotopic peak of [arginine+H-NH3](+) from the intensity of the corresponding monoisotopic peak according to isotope distribution of elements. Furthermore, the presence of interfering fragment ions could be avoided by optimizing MALDI ionization condition. In conclusion, isobaric interference can happen in PFM, but can be easily identified in the mass spectra and eliminated (minimized) with simple methods.","PeriodicalId":18243,"journal":{"name":"Mass spectrometry","volume":"224 1","pages":"S0030"},"PeriodicalIF":0.0000,"publicationDate":"2014-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mass spectrometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5702/massspectrometry.S0030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

Abstract

Parallel Fragmentation Monitoring (PFM), which is an analogue of selected reaction monitoring (SRM), is a recently developed method for quantification of small molecules by MALDI-TOF/TOF mass spectrometry (MS). It is well known that isobaric interference substances can be occasionally present in complex biological samples, and affect the accuracy of measurement by SRM. Unfortunately, by design it is not possible to assess whether isobaric interference happens in a SRM analysis. In contrast, the unique design of PFM should allow quick inspection for isobaric interference and subsequent correction. In this study, using arginine as an example, interference effect of isobaric structural analogs on the quantification of citrulline by PFM was evaluated. Our results showed that the presence of arginine affected the measured concentrations of citrulline standard solutions in a concentration dependent manner. Such interference could be observed readily in the MS/MS spectra, and contributed by [arginine+H-NH3](+) fragment ion. Because of having highly similar mass, (13)C-isotope of [arginine+H-NH3](+) fragment ion overlapped with monoisotope of [citrulline+H-NH3](+) fragment ion, which was used as the report ion for quantification. However, such interference could be mathematically eliminated or minimized through estimation of the signal intensity of the (13)C-isotopic peak of [arginine+H-NH3](+) from the intensity of the corresponding monoisotopic peak according to isotope distribution of elements. Furthermore, the presence of interfering fragment ions could be avoided by optimizing MALDI ionization condition. In conclusion, isobaric interference can happen in PFM, but can be easily identified in the mass spectra and eliminated (minimized) with simple methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
平行破碎监测定量瓜氨酸的等压干扰研究。
平行破碎监测(PFM)是近年来发展起来的一种用MALDI-TOF/TOF质谱(MS)对小分子进行定量分析的方法,与选择性反应监测(SRM)类似。众所周知,等压干扰物质偶尔会出现在复杂的生物样品中,并影响SRM测量的准确性。不幸的是,根据设计,在SRM分析中不可能评估等压干扰是否发生。相比之下,PFM的独特设计应该允许快速检查等压干涉和随后的校正。本研究以精氨酸为例,探讨了等压结构类似物对PFM定量瓜氨酸的干扰作用。我们的研究结果表明,精氨酸的存在以浓度依赖的方式影响瓜氨酸标准溶液的测量浓度。这种干扰在质谱上很容易观察到,并由[精氨酸+H-NH3](+)片段离子产生。由于质量高度相似,[精氨酸+H-NH3](+)片段离子的(13)c同位素与[瓜氨酸+H-NH3](+)片段离子的单同位素重叠,作为定量报告离子。但是,根据元素的同位素分布,通过估算[精氨酸+H-NH3](+)的(13)c -同位素峰的信号强度,可以在数学上消除或最小化这种干扰。此外,通过优化MALDI电离条件可以避免干扰碎片离子的存在。综上所述,等压干扰可能发生在PFM中,但可以很容易地在质谱中识别并通过简单的方法消除(最小化)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Mass spectrometry
Mass spectrometry Physics and Astronomy-Instrumentation
CiteScore
1.90
自引率
0.00%
发文量
3
期刊最新文献
A Method for High Throughput Free Fatty Acids Determination in a Small Section of Bovine Liver Tissue Using Supercritical Fluid Extraction Combined with Supercritical Fluid Chromatography-Medium Vacuum Chemical Ionization Mass Spectrometry. Comparison of Amine-Modified Polymeric Stationary Phases for Polar Metabolomic Analysis Based on Unified-Hydrophilic Interaction/Anion Exchange Liquid Chromatography/High-Resolution Mass Spectrometry (Unified-HILIC/AEX/HRMS). Mobilize a Proton to Transform the Collision-Induced Dissociation Spectral Pattern of a Cyclic Peptide. Recent Developments and Application of Mass Spectrometry Imaging in N-Glycosylation Studies: An Overview. Development of a Mass Spectrometry Imaging Method to Evaluate the Penetration of Moisturizing Components Coated on Surgical Gloves into Artificial Membranes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1