A statistical learning based approach for parameter fine-tuning of metaheuristics

IF 0.7 4区 数学 Q4 OPERATIONS RESEARCH & MANAGEMENT SCIENCE Sort-Statistics and Operations Research Transactions Pub Date : 2016-06-17 DOI:10.2436/20.8080.02.41
Laura Calvet, A. Juan, C. Serrat, Jana Ries
{"title":"A statistical learning based approach for parameter fine-tuning of metaheuristics","authors":"Laura Calvet, A. Juan, C. Serrat, Jana Ries","doi":"10.2436/20.8080.02.41","DOIUrl":null,"url":null,"abstract":"Metaheuristics are approximation methods used to solve combinatorial optimization problems. Their performance usually depends on a set of parameters that need to be adjusted. The selectionof appropriate parameter values causes a loss of efficiency, as it requires time, and advanced analytical and problem-specific skills. This paper provides an overview of the principal approaches to tackle the Parameter Setting Problem, focusing on the statistical procedures employed so far by the scientific community. In addition, a novel methodology is proposed, which is tested using an already existing algorithm for solving the Multi-Depot Vehicle Routing Problem.","PeriodicalId":49497,"journal":{"name":"Sort-Statistics and Operations Research Transactions","volume":"82 1","pages":"201-224"},"PeriodicalIF":0.7000,"publicationDate":"2016-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sort-Statistics and Operations Research Transactions","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2436/20.8080.02.41","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"OPERATIONS RESEARCH & MANAGEMENT SCIENCE","Score":null,"Total":0}
引用次数: 28

Abstract

Metaheuristics are approximation methods used to solve combinatorial optimization problems. Their performance usually depends on a set of parameters that need to be adjusted. The selectionof appropriate parameter values causes a loss of efficiency, as it requires time, and advanced analytical and problem-specific skills. This paper provides an overview of the principal approaches to tackle the Parameter Setting Problem, focusing on the statistical procedures employed so far by the scientific community. In addition, a novel methodology is proposed, which is tested using an already existing algorithm for solving the Multi-Depot Vehicle Routing Problem.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于统计学习的元启发式参数微调方法
元启发式是用于解决组合优化问题的近似方法。它们的性能通常取决于一组需要调整的参数。选择合适的参数值会导致效率的降低,因为它需要时间、高级分析和特定问题的技能。本文概述了解决参数设置问题的主要方法,重点介绍了科学界迄今为止采用的统计程序。此外,提出了一种新的方法,并利用已有的算法对该方法进行了测试,以解决多车场车辆路线问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Sort-Statistics and Operations Research Transactions
Sort-Statistics and Operations Research Transactions 管理科学-统计学与概率论
CiteScore
3.10
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: SORT (Statistics and Operations Research Transactions) —formerly Qüestiió— is an international journal launched in 2003. It is published twice-yearly, in English, by the Statistical Institute of Catalonia (Idescat). The journal is co-edited by the Universitat Politècnica de Catalunya, Universitat de Barcelona, Universitat Autonòma de Barcelona, Universitat de Girona, Universitat Pompeu Fabra i Universitat de Lleida, with the co-operation of the Spanish Section of the International Biometric Society and the Catalan Statistical Society. SORT promotes the publication of original articles of a methodological or applied nature or motivated by an applied problem in statistics, operations research, official statistics or biometrics as well as book reviews. We encourage authors to include an example of a real data set in their manuscripts.
期刊最新文献
Green hybrid fleets using electric vehicles: solving the heterogeneous vehicle routing problem with multiple driving ranges and loading capacities Integer constraints for enhancing interpretability in linear regression On interpretations of tests and effect sizes in regression models with a compositional predictor Modelling count data using the logratio-normal-multinomial distribution Bayesian structured antedependence model proposals for longitudinal data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1