M. Comas-Cufí, J. Martín-Fernández, G. Mateu-Figueras, J. Palarea‐Albaladejo
{"title":"Modelling count data using the logratio-normal-multinomial distribution","authors":"M. Comas-Cufí, J. Martín-Fernández, G. Mateu-Figueras, J. Palarea‐Albaladejo","doi":"10.2436/20.8080.02.96","DOIUrl":null,"url":null,"abstract":"The logratio-normal-multinomial distribution is a count data model resulting from compounding a multinomial distribution for the counts with a multivariate logratio-normal distribution for the multinomial event probabilities. However, the logratio-normal-multinomial probability mass function does not admit a closed form expression and, consequently, numerical approximation is required for parameter estimation. In this work, different estimation approaches are introduced and evaluated. We concluded that estimation based on a quasi-Monte Carlo Expectation-Maximisation algorithm provides the best overall results. Building on this, the performances of the Dirichlet-multinomial and logratio-normal-multinomial models are compared through a number of examples using simulated and real count data.","PeriodicalId":49497,"journal":{"name":"Sort-Statistics and Operations Research Transactions","volume":"123 1","pages":"0099-126"},"PeriodicalIF":0.7000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sort-Statistics and Operations Research Transactions","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2436/20.8080.02.96","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"OPERATIONS RESEARCH & MANAGEMENT SCIENCE","Score":null,"Total":0}
引用次数: 2
Abstract
The logratio-normal-multinomial distribution is a count data model resulting from compounding a multinomial distribution for the counts with a multivariate logratio-normal distribution for the multinomial event probabilities. However, the logratio-normal-multinomial probability mass function does not admit a closed form expression and, consequently, numerical approximation is required for parameter estimation. In this work, different estimation approaches are introduced and evaluated. We concluded that estimation based on a quasi-Monte Carlo Expectation-Maximisation algorithm provides the best overall results. Building on this, the performances of the Dirichlet-multinomial and logratio-normal-multinomial models are compared through a number of examples using simulated and real count data.
期刊介绍:
SORT (Statistics and Operations Research Transactions) —formerly Qüestiió— is an international journal launched in 2003. It is published twice-yearly, in English, by the Statistical Institute of Catalonia (Idescat). The journal is co-edited by the Universitat Politècnica de Catalunya, Universitat de Barcelona, Universitat Autonòma de Barcelona, Universitat de Girona, Universitat Pompeu Fabra i Universitat de Lleida, with the co-operation of the Spanish Section of the International Biometric Society and the Catalan Statistical Society. SORT promotes the publication of original articles of a methodological or applied nature or motivated by an applied problem in statistics, operations research, official statistics or biometrics as well as book reviews. We encourage authors to include an example of a real data set in their manuscripts.