Risk Analysis Method by the Extreme Data of Dependent Exogenous Variables

Ihor Tereshchenko, A. Tereshchenko, N. Bilous, S. Shtangey, Z. Warsza
{"title":"Risk Analysis Method by the Extreme Data of Dependent Exogenous Variables","authors":"Ihor Tereshchenko, A. Tereshchenko, N. Bilous, S. Shtangey, Z. Warsza","doi":"10.14313/jamris/3-2021/18","DOIUrl":null,"url":null,"abstract":"Many practical tasks of data multivariate statistical analysis from the standpoint of a risk-oriented process approach (in accordance with ISO 9001: 2015, 31000: 2018) requires the definition of the risk values for the dependent exogenous variables of some processes. This paper proposes the method, which consist of original stages sequence for calculating value-at-risk (VaR) or conditional-value-at-risk (CVaR) of dependent exogenous variables, presented of the extreme data frame of critical manufacture process parameters or other parameters, for example, extreme data of environmental monitoring and etc. Risk analysis method by the extreme data of dependent exogenous variables, presented of the data matrix, uses the result of solving the formalized problem of defines the tails parameters of the joint distributions of exogenous variables as components of a bivariate random variable. It can be argued that the tails parameters of the joint distributions of dependent exogenous variables make the validated corrections of the VaR and CVaR estimates for such variables. This method expands the practical application of extreme value theory for the value at risk analysis of any dependent variables as process parameters.","PeriodicalId":37910,"journal":{"name":"Journal of Automation, Mobile Robotics and Intelligent Systems","volume":"111 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Automation, Mobile Robotics and Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14313/jamris/3-2021/18","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

Many practical tasks of data multivariate statistical analysis from the standpoint of a risk-oriented process approach (in accordance with ISO 9001: 2015, 31000: 2018) requires the definition of the risk values for the dependent exogenous variables of some processes. This paper proposes the method, which consist of original stages sequence for calculating value-at-risk (VaR) or conditional-value-at-risk (CVaR) of dependent exogenous variables, presented of the extreme data frame of critical manufacture process parameters or other parameters, for example, extreme data of environmental monitoring and etc. Risk analysis method by the extreme data of dependent exogenous variables, presented of the data matrix, uses the result of solving the formalized problem of defines the tails parameters of the joint distributions of exogenous variables as components of a bivariate random variable. It can be argued that the tails parameters of the joint distributions of dependent exogenous variables make the validated corrections of the VaR and CVaR estimates for such variables. This method expands the practical application of extreme value theory for the value at risk analysis of any dependent variables as process parameters.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
因外生变量极值数据的风险分析方法
从风险导向过程方法的角度来看,数据多元统计分析的许多实际任务(根据ISO 9001: 2015, 31000: 2018)需要定义某些过程的外生变量的风险值。本文提出了一种计算外生因变量风险值(VaR)或条件风险值(CVaR)的原始阶段序列的方法,该方法以制造关键工艺参数或其他参数的极端数据框架为例,如环境监测的极端数据等。外生因变量极值数据的风险分析方法,以数据矩阵的形式表示,利用外生变量联合分布尾部参数作为二元随机变量组成部分的形式化问题的求解结果。可以认为,因缘外生变量联合分布的尾部参数对这些变量的VaR和CVaR估计进行了有效的修正。该方法扩展了极值理论在作为工艺参数的任何因变量的风险值分析中的实际应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Automation, Mobile Robotics and Intelligent Systems
Journal of Automation, Mobile Robotics and Intelligent Systems Engineering-Control and Systems Engineering
CiteScore
1.10
自引率
0.00%
发文量
25
期刊介绍: Fundamentals of automation and robotics Applied automatics Mobile robots control Distributed systems Navigation Mechatronics systems in robotics Sensors and actuators Data transmission Biomechatronics Mobile computing
期刊最新文献
A Numerical Analysis Based Internet of Things (IOT) and Big Data Analytics to Minimize Energy Consumption in Smart Buildings Design of Small-Phase Time-Variant Low-pass Digital Fractional Differentiators and Integrators Comparative Analysis of CNN-Based Smart Pre-Trained Models for Object Detection on DOTA Research to Simulate the Ship’s Vibration Regeneration System using a 6-Degree Freedom Gough-Stewart Parallel Robot Effective Nonlinear Predictive and CTC-PID Control of Rigid Manipulators
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1