{"title":"Lagrangian Dual Decision Rules for Multistage Stochastic Mixed-Integer Programming","authors":"Maryam Daryalal, Merve Bodur, James R. Luedtke","doi":"10.1287/opre.2022.2366","DOIUrl":null,"url":null,"abstract":"On Decision Rules for Multistage Stochastic Programs with Mixed-Integer Decisions Multistage stochastic programming is a field of stochastic optimization for addressing sequential decision-making problems defined over a stochastic process with a given probability distribution. The solution to such a problem is a decision rule (policy) that maps the history of observations to the decisions. Design of the decision rules in the presence of mixed-integer decisions is quite challenging. In “Lagrangian Dual Decision Rules for Multistage Stochastic Mixed-Integer Programming,” Daryalal, Bodur, and Luedtke introduce Lagrangian dual decision rules, where linear decision rules are applied to dual multipliers associated with Lagrangian duals of a multistage stochastic mixed-integer programming (MSMIP) model. The restricted decisions are then used in the development of new primal- and dual-bounding methods. This yields a new general-purpose approximation approach for MSMIP, free of strong assumptions made in the literature, such as stagewise independence or existence of a tractable-sized scenario-tree representation.","PeriodicalId":49809,"journal":{"name":"Military Operations Research","volume":"48 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2020-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Military Operations Research","FirstCategoryId":"91","ListUrlMain":"https://doi.org/10.1287/opre.2022.2366","RegionNum":4,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 5
Abstract
On Decision Rules for Multistage Stochastic Programs with Mixed-Integer Decisions Multistage stochastic programming is a field of stochastic optimization for addressing sequential decision-making problems defined over a stochastic process with a given probability distribution. The solution to such a problem is a decision rule (policy) that maps the history of observations to the decisions. Design of the decision rules in the presence of mixed-integer decisions is quite challenging. In “Lagrangian Dual Decision Rules for Multistage Stochastic Mixed-Integer Programming,” Daryalal, Bodur, and Luedtke introduce Lagrangian dual decision rules, where linear decision rules are applied to dual multipliers associated with Lagrangian duals of a multistage stochastic mixed-integer programming (MSMIP) model. The restricted decisions are then used in the development of new primal- and dual-bounding methods. This yields a new general-purpose approximation approach for MSMIP, free of strong assumptions made in the literature, such as stagewise independence or existence of a tractable-sized scenario-tree representation.
期刊介绍:
Military Operations Research is a peer-reviewed journal of high academic quality. The Journal publishes articles that describe operations research (OR) methodologies and theories used in key military and national security applications. Of particular interest are papers that present: Case studies showing innovative OR applications Apply OR to major policy issues Introduce interesting new problems areas Highlight education issues Document the history of military and national security OR.