{"title":"Radiometric self calibration","authors":"T. Mitsunaga, S. Nayar","doi":"10.1109/CVPR.1999.786966","DOIUrl":null,"url":null,"abstract":"A simple algorithm is described that computes the radiometric response function of an imaging system, from images of an arbitrary scene taken using different exposures. The exposure is varied by changing either the aperture setting or the shutter speed. The algorithm does not require precise estimates of the exposures used. Rough estimates of the ratios of the exposures (e.g. F-number settings on an inexpensive lens) are sufficient for accurate recovery of the response function as well as the actual exposure ratios. The computed response function is used to fuse the multiple images into a single high dynamic range radiance image. Robustness is tested using a variety of scenes and cameras as well as noisy synthetic images generated using 100 randomly selected response curves. Automatic rejection of image areas that have large vignetting effects or temporal scene variations make the algorithm applicable to not just photographic but also video cameras.","PeriodicalId":20644,"journal":{"name":"Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149)","volume":"117 1","pages":"374-380 Vol. 1"},"PeriodicalIF":0.0000,"publicationDate":"1999-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"840","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.1999.786966","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 840
Abstract
A simple algorithm is described that computes the radiometric response function of an imaging system, from images of an arbitrary scene taken using different exposures. The exposure is varied by changing either the aperture setting or the shutter speed. The algorithm does not require precise estimates of the exposures used. Rough estimates of the ratios of the exposures (e.g. F-number settings on an inexpensive lens) are sufficient for accurate recovery of the response function as well as the actual exposure ratios. The computed response function is used to fuse the multiple images into a single high dynamic range radiance image. Robustness is tested using a variety of scenes and cameras as well as noisy synthetic images generated using 100 randomly selected response curves. Automatic rejection of image areas that have large vignetting effects or temporal scene variations make the algorithm applicable to not just photographic but also video cameras.