Pushing the limits: How fault tolerance extends the scope of approximate computing

H. Wunderlich, Claus Braun, A. Schöll
{"title":"Pushing the limits: How fault tolerance extends the scope of approximate computing","authors":"H. Wunderlich, Claus Braun, A. Schöll","doi":"10.1109/IOLTS.2016.7604686","DOIUrl":null,"url":null,"abstract":"Approximate computing in hardware and software promises significantly improved computational performance combined with very low power and energy consumption. This goal is achieved by both relaxing strict requirements on accuracy and precision, and by allowing a deviating behavior from exact Boolean specifications to a certain extent. Today, approximate computing is often limited to applications with a certain degree of inherent error tolerance, where perfect computational results are not always required. However, in order to fully utilize its benefits, the scope of applications has to be significantly extended to other compute-intensive domains including science and engineering. To meet the often rather strict quality and reliability requirements for computational results in these domains, the use of appropriate characterization and fault tolerance measures is highly required. In this paper, we evaluate some of the available techniques and how they may extend the scope of application for approximate computing.","PeriodicalId":6580,"journal":{"name":"2016 IEEE 22nd International Symposium on On-Line Testing and Robust System Design (IOLTS)","volume":"40 1","pages":"133-136"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 22nd International Symposium on On-Line Testing and Robust System Design (IOLTS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IOLTS.2016.7604686","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Approximate computing in hardware and software promises significantly improved computational performance combined with very low power and energy consumption. This goal is achieved by both relaxing strict requirements on accuracy and precision, and by allowing a deviating behavior from exact Boolean specifications to a certain extent. Today, approximate computing is often limited to applications with a certain degree of inherent error tolerance, where perfect computational results are not always required. However, in order to fully utilize its benefits, the scope of applications has to be significantly extended to other compute-intensive domains including science and engineering. To meet the often rather strict quality and reliability requirements for computational results in these domains, the use of appropriate characterization and fault tolerance measures is highly required. In this paper, we evaluate some of the available techniques and how they may extend the scope of application for approximate computing.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
突破极限:容错如何扩展近似计算的范围
在硬件和软件中进行近似计算,可以显著提高计算性能,同时具有非常低的功耗和能耗。这一目标是通过放宽对准确性和精度的严格要求,以及允许在一定程度上偏离精确的布尔规范的行为来实现的。今天,近似计算通常局限于具有一定程度固有容错性的应用程序,在这些应用程序中并不总是需要完美的计算结果。然而,为了充分利用其优势,应用范围必须大大扩展到其他计算密集型领域,包括科学和工程。为了满足这些领域对计算结果通常相当严格的质量和可靠性要求,高度需要使用适当的表征和容错措施。在本文中,我们评估了一些可用的技术,以及它们如何扩展近似计算的应用范围。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Keytone: Silent Data Corruptions at Scale Welcome Field profiling & monitoring of payload transistors in FPGAs Statistical analysis and comparison of 2T and 3T1D e-DRAM minimum energy operation NBTI aging evaluation of PUF-based differential architectures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1