K. Chandran, S. Ramaswamy, Yonggen Lai, A. Wahle, M. Sonka
{"title":"Effect of Position and Flow Waveform on the Fluid Mechanics of a Stenosed Human Right Coronary Artery","authors":"K. Chandran, S. Ramaswamy, Yonggen Lai, A. Wahle, M. Sonka","doi":"10.1115/imece2001/bed-23134","DOIUrl":null,"url":null,"abstract":"\n Complete occlusion in any of the coronary vessels leads to a myocardial infarction. The role of fluid mechanical forces in atheroma development has been widely accepted because of preferential plaque growth at certain locations of the vessel geometry, such as a bifurcation or regions of high degrees of curvature. Areas of low and/or oscillatory shear stress have been correlated with atheroma development [1]. In order to determine the relationship between fluid mechanical stresses and development of lesions in the coronary vessels, it is important to analyze the fluid mechanics in actual three-dimensional geometries, incorporating the time-dependent translation and geometric alterations of these vessels [2,3].","PeriodicalId":7238,"journal":{"name":"Advances in Bioengineering","volume":"18 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2001-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Bioengineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/imece2001/bed-23134","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Complete occlusion in any of the coronary vessels leads to a myocardial infarction. The role of fluid mechanical forces in atheroma development has been widely accepted because of preferential plaque growth at certain locations of the vessel geometry, such as a bifurcation or regions of high degrees of curvature. Areas of low and/or oscillatory shear stress have been correlated with atheroma development [1]. In order to determine the relationship between fluid mechanical stresses and development of lesions in the coronary vessels, it is important to analyze the fluid mechanics in actual three-dimensional geometries, incorporating the time-dependent translation and geometric alterations of these vessels [2,3].