Reduction of false alarms triggered by spiders/cobwebs in surveillance camera networks

R. Hebbalaguppe, Kevin McGuinness, J. Kuklyte, Rami Albatal, C. Direkoğlu, N. O’Connor
{"title":"Reduction of false alarms triggered by spiders/cobwebs in surveillance camera networks","authors":"R. Hebbalaguppe, Kevin McGuinness, J. Kuklyte, Rami Albatal, C. Direkoğlu, N. O’Connor","doi":"10.1109/ICIP.2016.7532496","DOIUrl":null,"url":null,"abstract":"The percentage of false alarms caused by spiders in automated surveillance can range from 20-50%. False alarms increase the workload of surveillance personnel validating the alarms and the maintenance labor cost associated with regular cleaning of webs. We propose a novel, cost effective method to detect false alarms triggered by spiders/webs in surveillance camera networks. This is accomplished by building a spider classifier intended to be a part of the surveillance video processing pipeline. The proposed method uses a feature descriptor obtained by early fusion of blur and texture. The approach is sufficiently efficient for real-time processing and yet comparable in performance with more computationally costly approaches like SIFT with bag of visual words aggregation. The proposed method can eliminate 98.5% of false alarms caused by spiders in a data set supplied by an industry partner, with a false positive rate of less than 1%.","PeriodicalId":6521,"journal":{"name":"2016 IEEE International Conference on Image Processing (ICIP)","volume":"1 1","pages":"943-947"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Image Processing (ICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP.2016.7532496","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The percentage of false alarms caused by spiders in automated surveillance can range from 20-50%. False alarms increase the workload of surveillance personnel validating the alarms and the maintenance labor cost associated with regular cleaning of webs. We propose a novel, cost effective method to detect false alarms triggered by spiders/webs in surveillance camera networks. This is accomplished by building a spider classifier intended to be a part of the surveillance video processing pipeline. The proposed method uses a feature descriptor obtained by early fusion of blur and texture. The approach is sufficiently efficient for real-time processing and yet comparable in performance with more computationally costly approaches like SIFT with bag of visual words aggregation. The proposed method can eliminate 98.5% of false alarms caused by spiders in a data set supplied by an industry partner, with a false positive rate of less than 1%.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
减少监控摄像机网络中蜘蛛/蜘蛛网引发的误报
在自动监控中,蜘蛛引起的误报百分比可以在20-50%之间。虚警增加了监控人员验证虚警的工作量,也增加了定期清理网络的维护人力成本。我们提出了一种新颖的、经济有效的方法来检测监控摄像机网络中蜘蛛/网触发的假警报。这是通过构建一个蜘蛛分类器来实现的,该分类器旨在成为监控视频处理管道的一部分。该方法利用模糊和纹理的早期融合得到的特征描述符。该方法对于实时处理足够有效,但在性能上可与计算成本更高的方法相媲美,例如具有视觉单词聚合包的SIFT。在行业合作伙伴提供的数据集中,提出的方法可以消除98.5%的蜘蛛引起的误报,误报率小于1%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Content-adaptive pyramid representation for 3D object classification Automating the measurement of physiological parameters: A case study in the image analysis of cilia motion Horizon based orientation estimation for planetary surface navigation Softcast with per-carrier power-constrained channels Speeding-up a convolutional neural network by connecting an SVM network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1