R. Hebbalaguppe, Kevin McGuinness, J. Kuklyte, Rami Albatal, C. Direkoğlu, N. O’Connor
{"title":"Reduction of false alarms triggered by spiders/cobwebs in surveillance camera networks","authors":"R. Hebbalaguppe, Kevin McGuinness, J. Kuklyte, Rami Albatal, C. Direkoğlu, N. O’Connor","doi":"10.1109/ICIP.2016.7532496","DOIUrl":null,"url":null,"abstract":"The percentage of false alarms caused by spiders in automated surveillance can range from 20-50%. False alarms increase the workload of surveillance personnel validating the alarms and the maintenance labor cost associated with regular cleaning of webs. We propose a novel, cost effective method to detect false alarms triggered by spiders/webs in surveillance camera networks. This is accomplished by building a spider classifier intended to be a part of the surveillance video processing pipeline. The proposed method uses a feature descriptor obtained by early fusion of blur and texture. The approach is sufficiently efficient for real-time processing and yet comparable in performance with more computationally costly approaches like SIFT with bag of visual words aggregation. The proposed method can eliminate 98.5% of false alarms caused by spiders in a data set supplied by an industry partner, with a false positive rate of less than 1%.","PeriodicalId":6521,"journal":{"name":"2016 IEEE International Conference on Image Processing (ICIP)","volume":"1 1","pages":"943-947"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Image Processing (ICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP.2016.7532496","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
The percentage of false alarms caused by spiders in automated surveillance can range from 20-50%. False alarms increase the workload of surveillance personnel validating the alarms and the maintenance labor cost associated with regular cleaning of webs. We propose a novel, cost effective method to detect false alarms triggered by spiders/webs in surveillance camera networks. This is accomplished by building a spider classifier intended to be a part of the surveillance video processing pipeline. The proposed method uses a feature descriptor obtained by early fusion of blur and texture. The approach is sufficiently efficient for real-time processing and yet comparable in performance with more computationally costly approaches like SIFT with bag of visual words aggregation. The proposed method can eliminate 98.5% of false alarms caused by spiders in a data set supplied by an industry partner, with a false positive rate of less than 1%.