Mobile App Risk Ranking via Exclusive Sparse Coding

Deguang Kong, Lei Cen
{"title":"Mobile App Risk Ranking via Exclusive Sparse Coding","authors":"Deguang Kong, Lei Cen","doi":"10.1145/3308558.3313589","DOIUrl":null,"url":null,"abstract":"To improve mobile application (App for short) user experience, it is very important to inform the users about the apps' privacy risk levels. To address the challenge of incorporating the heterogeneous feature indicators (such as app permissions, user review, developers' description and ads library) into the risk ranking model, we formalize the app risk ranking problem as an exclusive sparse coding optimization problem by taking advantage of features from different modalities via the maximization of the feature consistency and enhancement of feature diversity. We propose an efficient iterative re-weighted method to solve the resultant optimization problem, the convergence of which can be rigorously proved. The extensive experiments demonstrate the consistent performance improvement using the real-world mobile application datasets (totally 13786 apps, 37966 descriptions, 10557681 user reviews and 200 ad libraries).","PeriodicalId":23013,"journal":{"name":"The World Wide Web Conference","volume":"64 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The World Wide Web Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3308558.3313589","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

To improve mobile application (App for short) user experience, it is very important to inform the users about the apps' privacy risk levels. To address the challenge of incorporating the heterogeneous feature indicators (such as app permissions, user review, developers' description and ads library) into the risk ranking model, we formalize the app risk ranking problem as an exclusive sparse coding optimization problem by taking advantage of features from different modalities via the maximization of the feature consistency and enhancement of feature diversity. We propose an efficient iterative re-weighted method to solve the resultant optimization problem, the convergence of which can be rigorously proved. The extensive experiments demonstrate the consistent performance improvement using the real-world mobile application datasets (totally 13786 apps, 37966 descriptions, 10557681 user reviews and 200 ad libraries).
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于排他性稀疏编码的手机应用风险排名
为了改善移动应用程序(简称App)的用户体验,告知用户应用程序的隐私风险等级是非常重要的。为了解决将异构特征指标(如应用权限、用户评论、开发者描述和广告库)纳入风险排序模型的挑战,我们通过最大化特征一致性和增强特征多样性来利用不同模式的特征,将应用风险排序问题形式化为排他稀疏编码优化问题。我们提出了一种有效的迭代重加权方法来求解结果优化问题,并严格证明了该方法的收敛性。广泛的实验证明了使用实际移动应用程序数据集(总共13786个应用程序,37966个描述,10557681个用户评论和200个广告库)的一致性能改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Decoupled Smoothing on Graphs Think Outside the Dataset: Finding Fraudulent Reviews using Cross-Dataset Analysis Augmenting Knowledge Tracing by Considering Forgetting Behavior Enhancing Fashion Recommendation with Visual Compatibility Relationship Judging a Book by Its Cover: The Effect of Facial Perception on Centrality in Social Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1