A. Mujahid, A. Najeeb, A. Khan, T. Hussain, M. Raza, A. Shah, N. Iqbal, M. Ahmad
{"title":"Tailoring Imprinted Titania Nanoparticles for Purines Recognition","authors":"A. Mujahid, A. Najeeb, A. Khan, T. Hussain, M. Raza, A. Shah, N. Iqbal, M. Ahmad","doi":"10.1155/2015/903543","DOIUrl":null,"url":null,"abstract":"Molecular imprinted titania nanoparticles were developed for selective recognition of purines, for example, guanine and its final oxidation product uric acid. Titania nanoparticles were prepared by hydrolysis of titanium butoxide as precursor in the presence of pattern molecules. The morphology of synthesized nanoparticles is evaluated by SEM images. Recognition characteristics of imprinted titania nanoparticles are studied by exposing them to standard solution of guanine and uric acid, respectively. The resultant change in their concentration is determined by UV/Vis analysis that indicated imprinted titania nanoparticles possess high affinity for print molecules. In both cases, nonimprinted titania is taken as control to observe nonspecific binding interactions. Cross sensitivity studies suggested that imprinted titania is at least five times more selective for binding print molecules than competing analyte thus indicating its potential for bioassay of purines.","PeriodicalId":17611,"journal":{"name":"Journal: Materials","volume":"14 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2015-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal: Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2015/903543","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Molecular imprinted titania nanoparticles were developed for selective recognition of purines, for example, guanine and its final oxidation product uric acid. Titania nanoparticles were prepared by hydrolysis of titanium butoxide as precursor in the presence of pattern molecules. The morphology of synthesized nanoparticles is evaluated by SEM images. Recognition characteristics of imprinted titania nanoparticles are studied by exposing them to standard solution of guanine and uric acid, respectively. The resultant change in their concentration is determined by UV/Vis analysis that indicated imprinted titania nanoparticles possess high affinity for print molecules. In both cases, nonimprinted titania is taken as control to observe nonspecific binding interactions. Cross sensitivity studies suggested that imprinted titania is at least five times more selective for binding print molecules than competing analyte thus indicating its potential for bioassay of purines.