Deep Neural Decision Forests

P. Kontschieder, M. Fiterau, A. Criminisi, S. R. Bulò
{"title":"Deep Neural Decision Forests","authors":"P. Kontschieder, M. Fiterau, A. Criminisi, S. R. Bulò","doi":"10.1109/ICCV.2015.172","DOIUrl":null,"url":null,"abstract":"We present Deep Neural Decision Forests - a novel approach that unifies classification trees with the representation learning functionality known from deep convolutional networks, by training them in an end-to-end manner. To combine these two worlds, we introduce a stochastic and differentiable decision tree model, which steers the representation learning usually conducted in the initial layers of a (deep) convolutional network. Our model differs from conventional deep networks because a decision forest provides the final predictions and it differs from conventional decision forests since we propose a principled, joint and global optimization of split and leaf node parameters. We show experimental results on benchmark machine learning datasets like MNIST and ImageNet and find on-par or superior results when compared to state-of-the-art deep models. Most remarkably, we obtain Top5-Errors of only 7.84%/6.38% on ImageNet validation data when integrating our forests in a single-crop, single/seven model GoogLeNet architecture, respectively. Thus, even without any form of training data set augmentation we are improving on the 6.67% error obtained by the best GoogLeNet architecture (7 models, 144 crops).","PeriodicalId":6633,"journal":{"name":"2015 IEEE International Conference on Computer Vision (ICCV)","volume":"6 1","pages":"1467-1475"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"458","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Computer Vision (ICCV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.2015.172","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 458

Abstract

We present Deep Neural Decision Forests - a novel approach that unifies classification trees with the representation learning functionality known from deep convolutional networks, by training them in an end-to-end manner. To combine these two worlds, we introduce a stochastic and differentiable decision tree model, which steers the representation learning usually conducted in the initial layers of a (deep) convolutional network. Our model differs from conventional deep networks because a decision forest provides the final predictions and it differs from conventional decision forests since we propose a principled, joint and global optimization of split and leaf node parameters. We show experimental results on benchmark machine learning datasets like MNIST and ImageNet and find on-par or superior results when compared to state-of-the-art deep models. Most remarkably, we obtain Top5-Errors of only 7.84%/6.38% on ImageNet validation data when integrating our forests in a single-crop, single/seven model GoogLeNet architecture, respectively. Thus, even without any form of training data set augmentation we are improving on the 6.67% error obtained by the best GoogLeNet architecture (7 models, 144 crops).
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
深度神经决策森林
我们提出了深度神经决策森林——一种新的方法,通过端到端方式训练分类树,将分类树与深度卷积网络中已知的表示学习功能结合起来。为了结合这两个世界,我们引入了一个随机和可微的决策树模型,该模型指导通常在(深度)卷积网络的初始层进行的表示学习。我们的模型与传统的深度网络不同,因为决策森林提供最终预测,它与传统的决策森林不同,因为我们提出了分裂和叶节点参数的原则,联合和全局优化。我们在基准机器学习数据集(如MNIST和ImageNet)上展示了实验结果,并与最先进的深度模型相比,发现了同等或更好的结果。最值得注意的是,当我们在单一作物和单一/七个模型的GoogLeNet架构中整合我们的森林时,我们在ImageNet验证数据上获得的top5误差分别为7.84%和6.38%。因此,即使没有任何形式的训练数据集增强,我们也在改进最好的GoogLeNet架构(7个模型,144个作物)所获得的6.67%的误差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Listening with Your Eyes: Towards a Practical Visual Speech Recognition System Using Deep Boltzmann Machines Self-Calibration of Optical Lenses Single Image Pop-Up from Discriminatively Learned Parts Multi-task Recurrent Neural Network for Immediacy Prediction Low-Rank Tensor Approximation with Laplacian Scale Mixture Modeling for Multiframe Image Denoising
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1