Noise Variance Estimation for Spectrum Sensing in Cognitive Radio Networks

Adeel Ahmed, Yim Fun Hu, James M. Noras
{"title":"Noise Variance Estimation for Spectrum Sensing in Cognitive Radio Networks","authors":"Adeel Ahmed,&nbsp;Yim Fun Hu,&nbsp;James M. Noras","doi":"10.1016/j.aasri.2014.09.008","DOIUrl":null,"url":null,"abstract":"<div><p>Spectrum sensing is used in cognitive radio systems to detect the availability of spectrum holes for secondary usage. The simplest and most famous spectrum sensing techniques are based either on energy detection or eigenspace analysis from Random Matrix Theory (RMT) such as using the Marchenko-Pastur law. These schemes suffer from uncertainty in estimating the noise variance which reduces their performance. In this paper we propose a new method to evaluate the noise variance that can eliminate the limitations of the aforementioned schemes. This method estimates the noise variance from a measurement set of noisy signals or noise-only signals. Extensive simulations show that the proposed method performs well in estimating the noise variance. Its performance greatly improves with increasing numbers of measurements and also with increasing numbers of samples taken per measurement.</p></div>","PeriodicalId":100008,"journal":{"name":"AASRI Procedia","volume":"9 ","pages":"Pages 37-43"},"PeriodicalIF":0.0000,"publicationDate":"2014-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.aasri.2014.09.008","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AASRI Procedia","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2212671614001085","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

Abstract

Spectrum sensing is used in cognitive radio systems to detect the availability of spectrum holes for secondary usage. The simplest and most famous spectrum sensing techniques are based either on energy detection or eigenspace analysis from Random Matrix Theory (RMT) such as using the Marchenko-Pastur law. These schemes suffer from uncertainty in estimating the noise variance which reduces their performance. In this paper we propose a new method to evaluate the noise variance that can eliminate the limitations of the aforementioned schemes. This method estimates the noise variance from a measurement set of noisy signals or noise-only signals. Extensive simulations show that the proposed method performs well in estimating the noise variance. Its performance greatly improves with increasing numbers of measurements and also with increasing numbers of samples taken per measurement.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
认知无线电网络频谱感知中的噪声方差估计
频谱感知在认知无线电系统中用于检测频谱孔的可用性以供二次使用。最简单和最著名的频谱传感技术是基于能量检测或随机矩阵理论(RMT)的特征空间分析,如使用Marchenko-Pastur定律。这些方案在估计噪声方差方面存在不确定性,降低了它们的性能。在本文中,我们提出了一种新的方法来评估噪声方差,可以消除上述方案的局限性。该方法估计噪声信号或纯噪声信号的测量集的噪声方差。大量的仿真结果表明,该方法能很好地估计噪声方差。它的性能随着测量次数的增加和每次测量的样本数量的增加而大大提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Preface Preface Preface Preface Classification of Wild Animals based on SVM and Local Descriptors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1