Towards robust machine learning methods for the analysis of brain data

K. Müller
{"title":"Towards robust machine learning methods for the analysis of brain data","authors":"K. Müller","doi":"10.1109/IWW-BCI.2018.8311495","DOIUrl":null,"url":null,"abstract":"In this short abstract I will discuss recent directions that machine learning and BCI efforts of the BBCI team and coworkers have taken. It is the nature of this short text that many pointers to research are given all of which show a high overlap to prior own contributions; this is not only unavoidable but intentional. When analysing Brain Data, it is challenging to combine data streams stemming from various modalities (see e.g. Biessmann et al., 2011, Sui et al., 2012, Fazli et al., 2015, Dähne et al., 2015). Hybrid BCIs are a successful example in this direction (Pfurtscheller et al., 2010, Müller-Putz et al. 2015, Dähne et al. 2015, Fazli et al. 2012, 2015). These techniques are firmly rooted in modern machine learning and signal processing that are now readily in use for analysing EEG, for decoding cognitive states etc. (Nikulin et al. 2007, and see Dornhege et al. 2004, Müller et al. 2008, Bünau et al. 2009, Tomioka and Müller, 2010, Blankertz et al., 2008, 2011, 2016, Lemm et al., 2011, for recent reviews and contributions to Machine Learning for BCI). Note that fusing information has also been a very common practice in the sciences and engineering (W altz and Llinas, 1990). The talk will discuss challenges for BCIs that are to be applied outside controlled lab spaces. Such complex and highly artifactual scenarios demand robust signal processing methods; see e.g. Samek et al. 2014, 2017b for recent reviews on robust methods for BCI. In addition I may expand on technical advances on the explanation framework for deep neural networks (Baehrens et al. 2010, Bach et al. 2015, Lapuschkin et al. 2016a and 2016b, Samek et al. 2017a, Montavon et al. 2017, 2018) to BCI data is given (Sturm et al. 2016). Furthermore, time permitting, I will revisit co-adaptive BCI systems (Vidaurre et al. 2011, Müller et al. 2017) and report on an upcoming study connecting fMRI and EEG data for co-adaptive training (Nierhaus et al. 2017). This abstract is based on joint work with Wojciech Samek, Benjamin Blankertz, Gabriel Curio, Michael Tangermann, Siamac Fazli, Vadim Nikulin, Gregoire Montavon, Sebastian Bach/Lapuschkin, Irene Sturm, Arno Villringer, Carmen Vidaurre, Till Nierhaus and many other members of the Berlin Brain Computer Interface team, the machine learning groups and many more esteemed collaborators. We greatly acknowledge funding by BMBF, EU, DFG and NRF.","PeriodicalId":6537,"journal":{"name":"2018 6th International Conference on Brain-Computer Interface (BCI)","volume":"13 1","pages":"1-2"},"PeriodicalIF":0.0000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 6th International Conference on Brain-Computer Interface (BCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWW-BCI.2018.8311495","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this short abstract I will discuss recent directions that machine learning and BCI efforts of the BBCI team and coworkers have taken. It is the nature of this short text that many pointers to research are given all of which show a high overlap to prior own contributions; this is not only unavoidable but intentional. When analysing Brain Data, it is challenging to combine data streams stemming from various modalities (see e.g. Biessmann et al., 2011, Sui et al., 2012, Fazli et al., 2015, Dähne et al., 2015). Hybrid BCIs are a successful example in this direction (Pfurtscheller et al., 2010, Müller-Putz et al. 2015, Dähne et al. 2015, Fazli et al. 2012, 2015). These techniques are firmly rooted in modern machine learning and signal processing that are now readily in use for analysing EEG, for decoding cognitive states etc. (Nikulin et al. 2007, and see Dornhege et al. 2004, Müller et al. 2008, Bünau et al. 2009, Tomioka and Müller, 2010, Blankertz et al., 2008, 2011, 2016, Lemm et al., 2011, for recent reviews and contributions to Machine Learning for BCI). Note that fusing information has also been a very common practice in the sciences and engineering (W altz and Llinas, 1990). The talk will discuss challenges for BCIs that are to be applied outside controlled lab spaces. Such complex and highly artifactual scenarios demand robust signal processing methods; see e.g. Samek et al. 2014, 2017b for recent reviews on robust methods for BCI. In addition I may expand on technical advances on the explanation framework for deep neural networks (Baehrens et al. 2010, Bach et al. 2015, Lapuschkin et al. 2016a and 2016b, Samek et al. 2017a, Montavon et al. 2017, 2018) to BCI data is given (Sturm et al. 2016). Furthermore, time permitting, I will revisit co-adaptive BCI systems (Vidaurre et al. 2011, Müller et al. 2017) and report on an upcoming study connecting fMRI and EEG data for co-adaptive training (Nierhaus et al. 2017). This abstract is based on joint work with Wojciech Samek, Benjamin Blankertz, Gabriel Curio, Michael Tangermann, Siamac Fazli, Vadim Nikulin, Gregoire Montavon, Sebastian Bach/Lapuschkin, Irene Sturm, Arno Villringer, Carmen Vidaurre, Till Nierhaus and many other members of the Berlin Brain Computer Interface team, the machine learning groups and many more esteemed collaborators. We greatly acknowledge funding by BMBF, EU, DFG and NRF.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
迈向分析大脑数据的强大机器学习方法
在这篇简短的摘要中,我将讨论机器学习和BCI团队及其同事的BCI工作的最新方向。这篇短文的本质是给出了许多研究的指针,所有这些都与之前自己的贡献有很大的重叠;这不仅是不可避免的,而且是有意为之。在分析大脑数据时,将来自不同模式的数据流结合起来是一项挑战(参见Biessmann等人,2011年,Sui等人,2012年,Fazli等人,2015年,Dähne等人,2015年)。混合型脑机接口是这一方向的成功范例(Pfurtscheller et al., 2010, meller - putz et al. 2015, Dähne et al. 2015, Fazli et al. 2012, 2015)。这些技术深深扎根于现代机器学习和信号处理,现在很容易用于分析脑电图,解码认知状态等(Nikulin等人,2007年,见Dornhege等人2004年,m ller等人2008年,b nau等人2009年,Tomioka和m ller, 2010年,Blankertz等人,2008年,2011年,2016年,Lemm等人,2011年,最近的评论和对BCI机器学习的贡献)。请注意,融合信息在科学和工程中也是一种非常常见的做法(W altz和Llinas, 1990)。本次讲座将讨论在受控实验室空间之外应用脑机接口所面临的挑战。这种复杂和高度人工的场景需要鲁棒的信号处理方法;参见Samek等人2014、2017b对脑接口鲁棒方法的最新综述。此外,我可以扩展深度神经网络解释框架的技术进步(Baehrens等人,2010年,Bach等人,2015年,Lapuschkin等人,2016a和2016b, Samek等人,2017a, Montavon等人,2017,2018),并给出BCI数据(Sturm等人,2016)。此外,如果时间允许,我将重新审视共适应脑机接口系统(Vidaurre等人,2011年,m勒等人,2017年),并报告即将进行的一项将功能磁共振成像和脑电图数据连接起来进行共适应训练的研究(Nierhaus等人,2017年)。这篇摘要是基于与Wojciech Samek、Benjamin Blankertz、Gabriel Curio、Michael Tangermann、Siamac Fazli、Vadim Nikulin、Gregoire Montavon、Sebastian Bach/Lapuschkin、Irene Sturm、Arno Villringer、Carmen Vidaurre、Till Nierhaus以及柏林脑机接口团队的许多其他成员、机器学习小组和许多更受尊敬的合作者的共同工作。我们非常感谢BMBF, EU, DFG和NRF的资助。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Embodied cognition Design of a brain-controlled robot arm system based on upper-limb movement imagery Applying deep-learning to a top-down SSVEP BMI BCI classification using locally generated CSP features Evaluation of outlier prevalence of density distribution in brain computed tomography: Comparison of kurtosis and quartile statistics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1