A. Norouzpour-Shirazi, D. Serrano, M. Zaman, G. Casinovi, F. Ayazi
{"title":"A dual-mode gyroscope architecture with in-run mode-matching capability and inherent bias cancellation","authors":"A. Norouzpour-Shirazi, D. Serrano, M. Zaman, G. Casinovi, F. Ayazi","doi":"10.1109/TRANSDUCERS.2015.7180851","DOIUrl":null,"url":null,"abstract":"This paper introduces a novel dual-mode actuation and sensing scheme for readout and calibration of axisymmetric Coriolis resonant gyroscopes. The proposed scheme actuates both gyroscope modes simultaneously with the same in-phase excitation, senses both modes concurrently, and utilizes the sum and difference of the sense signals to demonstrate complete cancellation of the gyroscope bias terms, and provide automatic in-run mode-matching capability. Moreover, the architecture provides twofold enhancement of angular rate sensitivity and signal-to-noise performance, as compared to conventional single-mode excitation of the same gyroscope. We demonstrate, for the first time 45× reduction in temperature drift of bias of a 2.6 MHz 650 μm diameter substrate-decoupled BAW gyroscope and a bias stability of 5.4 °/hr, paving the way towards near-zero-drift gyroscopes.","PeriodicalId":6465,"journal":{"name":"2015 Transducers - 2015 18th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2015-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 Transducers - 2015 18th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TRANSDUCERS.2015.7180851","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12
Abstract
This paper introduces a novel dual-mode actuation and sensing scheme for readout and calibration of axisymmetric Coriolis resonant gyroscopes. The proposed scheme actuates both gyroscope modes simultaneously with the same in-phase excitation, senses both modes concurrently, and utilizes the sum and difference of the sense signals to demonstrate complete cancellation of the gyroscope bias terms, and provide automatic in-run mode-matching capability. Moreover, the architecture provides twofold enhancement of angular rate sensitivity and signal-to-noise performance, as compared to conventional single-mode excitation of the same gyroscope. We demonstrate, for the first time 45× reduction in temperature drift of bias of a 2.6 MHz 650 μm diameter substrate-decoupled BAW gyroscope and a bias stability of 5.4 °/hr, paving the way towards near-zero-drift gyroscopes.