Understanding in-video dropouts and interaction peaks inonline lecture videos

Juho Kim, Philip J. Guo, Daniel T. Seaton, Piotr Mitros, Krzysztof Z Gajos, Rob Miller
{"title":"Understanding in-video dropouts and interaction peaks inonline lecture videos","authors":"Juho Kim, Philip J. Guo, Daniel T. Seaton, Piotr Mitros, Krzysztof Z Gajos, Rob Miller","doi":"10.1145/2556325.2566237","DOIUrl":null,"url":null,"abstract":"With thousands of learners watching the same online lecture videos, analyzing video watching patterns provides a unique opportunity to understand how students learn with videos. This paper reports a large-scale analysis of in-video dropout and peaks in viewership and student activity, using second-by-second user interaction data from 862 videos in four Massive Open Online Courses (MOOCs) on edX. We find higher dropout rates in longer videos, re-watching sessions (vs first-time), and tutorials (vs lectures). Peaks in re-watching sessions and play events indicate points of interest and confusion. Results show that tutorials (vs lectures) and re-watching sessions (vs first-time) lead to more frequent and sharper peaks. In attempting to reason why peaks occur by sampling 80 videos, we observe that 61% of the peaks accompany visual transitions in the video, e.g., a slide view to a classroom view. Based on this observation, we identify five student activity patterns that can explain peaks: starting from the beginning of a new material, returning to missed content, following a tutorial step, replaying a brief segment, and repeating a non-visual explanation. Our analysis has design implications for video authoring, editing, and interface design, providing a richer understanding of video learning on MOOCs.","PeriodicalId":20830,"journal":{"name":"Proceedings of the first ACM conference on Learning @ scale conference","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2014-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"329","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the first ACM conference on Learning @ scale conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2556325.2566237","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 329

Abstract

With thousands of learners watching the same online lecture videos, analyzing video watching patterns provides a unique opportunity to understand how students learn with videos. This paper reports a large-scale analysis of in-video dropout and peaks in viewership and student activity, using second-by-second user interaction data from 862 videos in four Massive Open Online Courses (MOOCs) on edX. We find higher dropout rates in longer videos, re-watching sessions (vs first-time), and tutorials (vs lectures). Peaks in re-watching sessions and play events indicate points of interest and confusion. Results show that tutorials (vs lectures) and re-watching sessions (vs first-time) lead to more frequent and sharper peaks. In attempting to reason why peaks occur by sampling 80 videos, we observe that 61% of the peaks accompany visual transitions in the video, e.g., a slide view to a classroom view. Based on this observation, we identify five student activity patterns that can explain peaks: starting from the beginning of a new material, returning to missed content, following a tutorial step, replaying a brief segment, and repeating a non-visual explanation. Our analysis has design implications for video authoring, editing, and interface design, providing a richer understanding of video learning on MOOCs.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
了解在线讲座视频中的视频中断和交互高峰
随着成千上万的学习者观看相同的在线课程视频,分析视频观看模式为了解学生如何通过视频学习提供了一个独特的机会。本文报告了一项大规模的视频辍学率、观看高峰和学生活动的分析,使用了edX上四个大规模开放在线课程(MOOCs)的862个视频的逐秒用户交互数据。我们发现,在较长的视频、重复观看(与第一次观看相比)和教程(与讲座相比)中,辍学率更高。重看阶段和游戏事件的高峰表明玩家的兴趣点和困惑点。结果表明,辅导课(与讲课相比)和重看课程(与第一次相比)会导致更频繁、更尖锐的峰值。在试图通过采样80个视频来解释峰值发生的原因时,我们观察到61%的峰值伴随着视频中的视觉过渡,例如,从幻灯片视图到教室视图。基于这一观察,我们确定了五种可以解释峰值的学生活动模式:从新材料的开始开始,返回错过的内容,遵循教程步骤,重播简短的片段,重复非视觉解释。我们的分析对视频创作、编辑和界面设计具有设计意义,为mooc上的视频学习提供了更丰富的理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The challenges of using a MOOC to introduce "absolute beginners" to programming on specialized hardware L@S 2014 demo: best practices for MOOC video Feature engineering for clustering student solutions "Why did you enroll in this course?": developing a standardized survey question for reasons to enroll Evaluating educational interventions at scale
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1