Optimization of controlled two-step liquid phase crystallization of Ge-on-Si

Sandeep Kumar, Pankaj Kumar, K. Kumari, S. Avasthi
{"title":"Optimization of controlled two-step liquid phase crystallization of Ge-on-Si","authors":"Sandeep Kumar, Pankaj Kumar, K. Kumari, S. Avasthi","doi":"10.1109/icee44586.2018.8937975","DOIUrl":null,"url":null,"abstract":"This work presents a two-step liquid phase crystallization process for realizing large-grain epitaxial germanium (Ge) on silicon substrates. The process starts with amorphous Ge films on silicon (100) substrate which is subjected to a two-step annealing process. In the first step, films are heated to 950°C for 5 minutes, a temperature above the melting point of Ge. Next the films are allowed to cool down to 930°C and maintained at that temperature for 1 to 5 hours respectively in order to check its effect on the crystallization process. The 950°C for 5 mins and 930°C for 2 hours shows the optimum annealing conditions to achieve highly crystalline films. The surface morphologies of the annealed samples were characterized using scanning electron microscopy which shows grain sizes ranging from 2-5 $\\mu$m. The crystallinity of the films was confirmed using Raman spectroscopy and x-ray diffraction (XRD) measurements. Theta/2-theta XRD measurements of samples show the peak for Ge(400) at 66.3°. The degree of grain orientations along Ge(400) plane is further evaluated using the rocking curve in XRD measurements which shows full-width at half maximum height value of 0.08° (or 288 arc sec) along this plane for the optimum two-step annealing process condition.","PeriodicalId":6590,"journal":{"name":"2018 4th IEEE International Conference on Emerging Electronics (ICEE)","volume":"5 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 4th IEEE International Conference on Emerging Electronics (ICEE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/icee44586.2018.8937975","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This work presents a two-step liquid phase crystallization process for realizing large-grain epitaxial germanium (Ge) on silicon substrates. The process starts with amorphous Ge films on silicon (100) substrate which is subjected to a two-step annealing process. In the first step, films are heated to 950°C for 5 minutes, a temperature above the melting point of Ge. Next the films are allowed to cool down to 930°C and maintained at that temperature for 1 to 5 hours respectively in order to check its effect on the crystallization process. The 950°C for 5 mins and 930°C for 2 hours shows the optimum annealing conditions to achieve highly crystalline films. The surface morphologies of the annealed samples were characterized using scanning electron microscopy which shows grain sizes ranging from 2-5 $\mu$m. The crystallinity of the films was confirmed using Raman spectroscopy and x-ray diffraction (XRD) measurements. Theta/2-theta XRD measurements of samples show the peak for Ge(400) at 66.3°. The degree of grain orientations along Ge(400) plane is further evaluated using the rocking curve in XRD measurements which shows full-width at half maximum height value of 0.08° (or 288 arc sec) along this plane for the optimum two-step annealing process condition.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
锗硅可控两步液相结晶工艺优化
本文提出了在硅衬底上实现大晶粒外延锗的两步液相结晶工艺。该工艺从硅(100)衬底上的非晶锗膜开始,该衬底经过两步退火工艺。在第一步中,将薄膜加热到950°C 5分钟,温度高于Ge的熔点。接下来,将薄膜冷却至930℃,并分别在该温度下保持1至5小时,以检查其对结晶过程的影响。950°C 5分钟和930°C 2小时显示了获得高结晶膜的最佳退火条件。利用扫描电镜对退火后样品的表面形貌进行了表征,晶粒尺寸在2 ~ 5 μ m之间。利用拉曼光谱和x射线衍射(XRD)测量证实了薄膜的结晶度。样品的Theta/2-theta XRD测量显示Ge(400)在66.3°处出现峰值。通过x射线衍射(XRD)摇摆曲线进一步评价了Ge(400)平面上晶粒的取向程度,结果表明:对于最佳的两步退火工艺条件,沿Ge(400)平面的半高全宽为0.08°(或288弧秒)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Comprehensive Computational Modelling Approach for Graphene FETs Thermoelectric Properties of CrI3 Monolayer A Simple Charge and Capacitance Compact Model for Asymmetric III-V DGFETs Using CCDA Selective dewetting of metal films for fabrication of atomically separated nanoplasmonic dimers SIMS characterization of TiN diffusion barrier layer on steel substrate
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1